Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(5): e17298, 2024 May.
Article in English | MEDLINE | ID: mdl-38712640

ABSTRACT

Diversified crop rotations have been suggested to reduce grain yield losses from the adverse climatic conditions increasingly common under climate change. Nevertheless, the potential for climate change adaptation of different crop rotational diversity (CRD) remains undetermined. We quantified how climatic conditions affect small grain and maize yields under different CRDs in 32 long-term (10-63 years) field experiments across Europe and North America. Species-diverse and functionally rich rotations more than compensated yield losses from anomalous warm conditions, long and warm dry spells, as well as from anomalous wet (for small grains) or dry (for maize) conditions. Adding a single functional group or crop species to monocultures counteracted yield losses from substantial changes in climatic conditions. The benefits of a further increase in CRD are comparable with those of improved climatic conditions. For instance, the maize yield benefits of adding three crop species to monocultures under detrimental climatic conditions exceeded the average yield of monocultures by up to 553 kg/ha under non-detrimental climatic conditions. Increased crop functional richness improved yields under high temperature, irrespective of precipitation. Conversely, yield benefits peaked at between two and four crop species in the rotation, depending on climatic conditions and crop, and declined at higher species diversity. Thus, crop species diversity could be adjusted to maximize yield benefits. Diversifying rotations with functionally distinct crops is an adaptation of cropping systems to global warming and changes in precipitation.


Subject(s)
Climate Change , Crops, Agricultural , Zea mays , Crops, Agricultural/growth & development , Zea mays/growth & development , North America , Europe , Edible Grain/growth & development , Agriculture/methods , Biodiversity , Crop Production/methods
2.
Weed Res ; 63(1): 1-11, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37082111

ABSTRACT

Over the last 30 years, many studies have surveyed weed vegetation on arable land. The 'Arable Weeds and Management in Europe' (AWME) database is a collection of 36 of these surveys and the associated management data. Here, we review the challenges associated with combining disparate datasets and explore some of the opportunities for future research that present themselves thanks to the AWME database. We present three case studies repeating previously published national scale analyses with data from a larger spatial extent. The case studies, originally done in France, Germany and the UK, explore various aspects of weed ecology (community composition, management and environmental effects and within-field distributions) and use a range of statistical techniques (canonical correspondence analysis, redundancy analysis and generalised linear mixed models) to demonstrate the utility and versatility of the AWME database. We demonstrate that (i) the standardisation of abundance data to a common measure, before the analysis of the combined dataset, has little impact on the outcome of the analyses, (ii) the increased extent of environmental or management gradients allows for greater confidence in conclusions and (iii) the main conclusions of analyses done at different spatial scales remain consistent. These case studies demonstrate the utility of a Europe-wide weed survey database, for clarifying or extending results obtained from studies at smaller scales. This Europe-wide data collection offers many more opportunities for analysis that could not be addressed in smaller datasets; including questions about the effects of climate change, macro-ecological and biogeographical issues related to weed diversity as well as the dominance or rarity of specific weeds in Europe.

3.
Plants (Basel) ; 9(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580354

ABSTRACT

Arable field margins are valuable habitats providing a wide range of ecosystem services in rural landscapes. Agricultural intensification in recent decades has been a major cause of decline in plant diversity in these habitats. However, the concomitant effects on plant functional diversity are less documented, particularly in Mediterranean areas. In this paper, we analyzed the effect of margin width and surrounding landscape (cover and diversity of land use and field size), used as proxies for management intensity at local and landscape scales, on plant species richness, functional diversity and functional trait values in margins of winter cereal fields in southern Spain. Five functional traits were selected: life form, growth form, seed mass, seed dispersal mode and pollination type. RLQ and fourth-corner analyses were used to link functional traits and landscape variables. A total of 306 plant species were recorded. Species richness and functional diversity were positively related to margin width but showed no response to landscape variables. Functional trait values were affected neither by the local nor landscape variables. Our results suggest that increasing the margin width of conventionally managed cereal fields would enhance both taxonomic and functional diversity of margin plant assemblages, and thus the services they provide to the agro-ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...