Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(14): 5327-5332, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577358

ABSTRACT

Dioxygen binding solely through non-covalent interactions is rare. In living systems, dioxygen transport takes place via iron or copper-containing biological cofactors. Specifically, a reversible covalent interaction is established when O2 binds to the mono or polynuclear metal center. However, O2 stabilization in the absence of covalent bond formation is challenging and rarely observed. Here, we demonstrate a unique example of reversible non-covalent binding of dioxygen within the cavity of a well-defined synthetic all-Cu(i) tetracopper cluster.

2.
Angew Chem Int Ed Engl ; 61(41): e202209529, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35998086

ABSTRACT

Template-assisted synthesis of well-defined polynuclear clusters remains a challenge for [M4 ] square planar topologies. Herein, we present a tetraamine scaffold R L(NH2 )4 , where L is a rigidified resorcin[4]arene, to direct the formation of C4 -symmetric R L(NH)4 Cu4 clusters with Cu-Cu distances around 2.7 Å, suggesting metal-metal direct interactions are operative since the sum of copper's van der Waals radii is 2.8 Å. DFT calculations display HOMO to HOMO-3 residing all within a 0.1 eV gap. These four orbitals display significant electron density contribution from the Cu centers suggesting a delocalized electronic structure. The one-electron oxidized [Cu4 ]+ species was probed by variable temperature X-band continuous wave-electron paramagnetic resonance (CW-EPR), which displays a multiline spectrum at room temperature. This work presents a novel synthetic strategy for [M4 ] clusters and a new platform to investigate activation of small molecules.

3.
4.
Chem Sci ; 13(7): 2026-2032, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35308854

ABSTRACT

Macrocyclic arenes laid the foundations of supramolecular chemistry and their study established the fundamentals of noncovalent interactions. Advancing their frontier, here we designed rigidified resorcin[4]arenes that serve as hosts for large nonspherical anions. In one synthetic step, we vary the host's anion affinity properties by more than seven orders of magnitude. This is possible by engineering electropositive aromatic C-H bond donors in an idealized square planar geometry embedded within the host's inner cavity. The hydrogen atom's electropositivity is tuned by introducing fluorine atoms as electron withdrawing groups. These novel macrocycles, termed fluorocages, are engineered to sequester large anions. Indeed, experimental data shows an increase in the anion association constant (K a) as the number of F atoms increase. The observed trend is rationalized by DFT calculations of Hirshfeld Charges (HCs). Most importantly, fluorocages in solution showed weak-to-medium binding affinity for large anions like [PF6]- (102< K a <104 M-1), and high affinity for [MeSO3]- (K a >106).

5.
Chemistry ; 27(34): 8642-8655, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33780560

ABSTRACT

Molecular compounds with permanent tubular architectures displaying radial π-conjugation are exceedingly rare. Their radial and axial delocalization presents them with unique optical and electronic properties, such as remarkable tuning of their Stokes shifts, and redox switching between global and local aromaticity. Although these tubular compounds display large internal void spaces, these attributes have not been extensively explored, thus presenting future opportunities in the development of materials. By using cutting-edge synthetic methodologies to bend aromatic surfaces, large opportunities in synthesis, property discovery, and applications are expected in new members of this family of conjugated molecular nanotubes.

6.
Org Lett ; 23(1): 87-92, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33332966

ABSTRACT

Molecular compounds with zigzag carbon nanotube geometries are exceedingly rare. Here we report the synthesis and characterization of carbon-based nanotubes with zigzag geometry, best described as radially oriented [n]cyclo-meta-phenylenes, extending the tubularene family of compounds. By the incorporation of edge-sharing benzene rings into the tubularene's radial π-surface, we have uncovered the first step to give rise to the emergence of radial orbital distribution in zigzag nanorings.

7.
J Am Chem Soc ; 142(49): 20624-20630, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33236891

ABSTRACT

Recent interest in potassium-doped p-terphenyl has been fueled by reports of superconductivity at Tc values surprisingly high for organic compounds. Despite these interesting properties, studies of the structure-function relationships within these materials have been scarce. Here, we isolate a phase-pure crystal of potassium-doped p-terphenyl: [K(222)]2[p-terphenyl3]. Emerging antiferromagnetism in the anisotropic structure is studied in depth by magnetometry and electron spin resonance. Combining these experimental results with density functional theory calculations, we describe the antiferromagnetic coupling in this system that occurs in all 3 crystallographic directions. The strongest coupling was found along the ends of the terphenyls, where the additional electron on neighboring p-terphenyls antiferromagnetically couple. This delocalized bonding interaction is reminiscent of the doubly degenerate resonance structure depiction of polyacetylene. These findings hint toward magnetic fluctuation-induced superconductivity in potassium-doped p-terphenyl, which has a close analogy with high Tc cuprate superconductors. The new approach described here is very versatile as shown by the preparation of two additional salts through systematic changing of the building blocks.

8.
Angew Chem Int Ed Engl ; 59(34): 14303-14307, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32495388

ABSTRACT

This study explores a new mode of contortion in perylene diimides where the molecule is bent, like a bow, along its long axis. These bowed PDIs were synthesized through a facile fourfold Suzuki macrocyclization with aromatic linkers and a tetraborylated perylene diimide that introduces strain and results in a bowed structure. By altering the strings of the bow, the degree of bending can be controlled from flat to highly bent. Through spectroscopy and quantum chemical calculations, it is demonstrated that the energy of the lowest unoccupied orbital can be controlled by the degree of bending in the structures and that the energy of the highest occupied orbital can be controlled to a large extent by the constitution of the aromatic linkers. The important finding is that the bowing results not only in red-shifted absorptions but also more facile reductions.

9.
Proc Natl Acad Sci U S A ; 116(32): 15836-15841, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31324742

ABSTRACT

In this report we examine a family of trinuclear iron complexes by multiple-wavelength, anomalous diffraction (MAD) to explore the redox load distribution within cluster materials by the free refinement of atomic scattering factors. Several effects were explored that can impact atomic scattering factors within clusters, including 1) metal atom primary coordination sphere, 2) M-M bonding, and 3) redox delocalization in formally mixed-valent species. Complexes were investigated which vary from highly symmetric to fully asymmetric by 57Fe Mössbauer and X-ray diffraction to explore the relationship between MAD-derived data and the data available from these widely used characterization techniques. The compounds examined include the all-ferrous clusters [ n Bu4N][(tbsL)Fe3(µ3-Cl)] (1) ([tbsL]6- = [1,3,5-C6H9(NC6H4-o-NSi t BuMe2)3]6-]), (tbsL)Fe3(py) (2), [K(C222)]2[(tbsL)Fe3(µ3-NPh)] (4) (C222 = 2,2,2-cryptand), and the mixed-valent (tbsL)Fe3(µ3-NPh) (3). Redox delocalization in mixed-valent 3 was explored with cyclic voltammetry (CV), zero-field 57Fe Mössbauer, near-infrared (NIR) spectroscopy, and X-ray crystallography techniques. We find that the MAD results show an excellent correspondence to 57Fe Mössbauer data; yet also can distinguish between subtle changes in local coordination geometries where Mössbauer cannot. Differences within aggregate oxidation levels are evident by systematic shifts of scattering factor envelopes to increasingly higher energies. However, distinguishing local oxidation levels in iso- or mixed-valent materials can be dramatically obscured by the degree of covalent intracore bonding. MAD-derived atomic scattering factor data emphasize in-edge features that are often difficult to analyze by X-ray absorption near edge spectroscopy (XANES). Thus, relative oxidation levels within the cluster were most reliably ascertained from comparing the entire envelope of the atomic scattering factor data.


Subject(s)
X-Ray Diffraction , Crystallography, X-Ray , Models, Molecular , Oxidation-Reduction , Spectroscopy, Mossbauer
10.
Chem Sci ; 10(4): 1029-1034, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30774898

ABSTRACT

We report the synthesis of a bilayer chiral nanographene incorporating a [7]helicene scaffold and two perylene-diimide (PDI) subunits. Twofold visible-light-induced oxidative cyclization of a phenanthrene framework selects for the desired PDI-helicene, despite the immense strain that distinguishes this helicene from two other accessible isomers. This strain arises from the extensive intramolecular overlap of the PDI subunits, which precludes racemization, even at elevated temperatures. Relative to a smaller homologue, this PDI-helicene exhibits amplified electronic circular dichroism. It also readily and reversibly accepts four electrons electrochemically. Modifications to the core phenanthrene subunit change the fluorescence and electrochemistry of the PDI-helicene without significantly impacting its electronic circular dichroism or UV-visible absorbance.

11.
Angew Chem Int Ed Engl ; 57(42): 13815-13820, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30180280

ABSTRACT

Deconvoluting the atom-specific electron density within polynuclear systems remains a challenge. A multiple-wavelength anomalous diffraction study on four clusters that share the same [Co6 Se8 ] core was performed. Two cluster types were designed, one having a symmetric ligand sphere and the other having an asymmetric ligand sphere. It was found that in the neutral, asymmetric, CO-bound cluster, the Co-CO site is more highly oxidized than the other five Co atoms; when an electron is removed, the hole is distributed among the Se atoms. In the neutral, symmetric cluster, the Co atoms divide by electron population into two sets of three, each set being meridional; upon removal of an electron, the hole is distributed among all the Co atoms. This ligand-dependent tuning of the electron/hole distribution relates directly to the performance of clusters in biological and synthetic systems.

12.
J Am Chem Soc ; 140(20): 6235-6239, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29757639

ABSTRACT

We report the synthesis and characterization of a chiral, shape-persistent, perylene-diimide-based nanoribbon. Specifically, the fusion of three perylene-diimide monomers with intervening naphthalene subunits resulted in a helical superstructure with two [6]helicene subcomponents. This π-helix-of-helicenes exhibits very intense electronic circular dichroism, including one of the largest Cotton effects ever observed in the visible range. It also displays more than an order of magnitude increase in circular dichroism for select wavelengths relative to its smaller homologue. These impressive chiroptical properties underscore the potential of this new nanoribbon architecture in the context of chiral electronic materials.

13.
Nat Commun ; 9(1): 1957, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769520

ABSTRACT

Self-assembly of electroactive molecules is a promising route to new types of functional semiconductors. Here we report a capsule-shaped molecule that assembles itself into a cellular semiconducting material. The interior space of the capsule with a volume of ~415 Å3 is a nanoenvironment that can accommodate a guest. To self-assemble these capsules into electronic materials, we functionalize the thiophene rings with bromines, which encode self-assembly into two-dimensional layers held together through halogen bonding interactions. In the solid state and in films, these two-dimensional layers assemble into the three-dimensional crystalline structure. This hollow material is able to form the active layer in field effect transistor devices. We find that the current of these devices has strong response to the guest's interaction within the hollow spaces in the film. These devices are remarkable in their ability to distinguish, through their electrical response, between small differences in the guest.

14.
Nano Lett ; 17(12): 7859-7863, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29125302

ABSTRACT

This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

15.
Chemistry ; 23(48): 11479-11484, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28688116

ABSTRACT

Oxidation of the nucleophilic nitride, (salen)Mn≡N (1) with stoichiometric [Ar3 N][X] initiated a nitride coupling reaction to N2 , a major step toward catalytic ammonia oxidation (salen=N,N'-bis(salicylidene)-ethylenediamine dianion; Ar=p-bromophenyl; X=[SbCl6 ]- or [B(C6 F5 )4 ]- ). N2 production was confirmed by mass spectral analysis of the isotopomer, 1-15 N, and the gas quantified. The metal products of oxidation were the reduced MnIII dimers, [(salen)MnCl]2 (2) or [(salen)Mn(OEt2 )]2 [B(C6 F5 )4 ]2 (3) for X=[SbCl6 ]- or [B(C6 F5 )4 ]- , respectively. The mechanism of nitride coupling was probed to distinguish a nitridyl from a nucleophilic/electrophilic coupling sequence. During these studies, a rare mixed-valent MnV /MnIII bridging nitride, [(salen)MnV (µ-N)MnIII (salen)][B(C6 F5 )4 ] (4), was isolated, and its oxidation-state assignment was confirmed by X-ray diffraction (XRD) studies, perpendicular and parallel-mode EPR and UV/Vis/NIR spectroscopies, as well as superconducting quantum interference device (SQUID) magnetometry. We found that 4 could subsequently be oxidized to 3. Furthermore, in view of generating a catalytic system, 2 can be re-oxidized to 1 in the presence of NH3 and NaOCl closing a pseudo-catalytic "synthetic" cycle. Together, the reduction of 1→2 followed by oxidation of 2→1 yield a genuine synthetic cycle for NH3 oxidation, paving the way to the development of a fully catalytic system by using abundant metal catalysis.

16.
Nano Lett ; 17(2): 1204-1211, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28103039

ABSTRACT

Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.


Subject(s)
Ion Channels/chemistry , Nanotubes, Carbon/chemistry , Cations/chemistry , Ion Transport , Particle Size , Permeability , Polymers/chemistry , Porosity , Static Electricity , Structure-Activity Relationship , Thermodynamics
17.
Dalton Trans ; 45(11): 4819-27, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26867513

ABSTRACT

While the redox active backbone of bis(phosphino)ferrocene ligands is often cited as an important feature of these ligands in catalytic studies, the structural parameters of oxidized bis(phosphino)ferrocene ligands have not been thoroughly studied. The reaction of [Re(CO)3(dippf)Br] (dippf = 1,1'-bis(diiso-propylphosphino)ferrocene) and [NO][BF4] in methylene chloride yields the oxidized compound, [Re(CO)3(dippf)Br][BF4]. The oxidized species, [Re(CO)3(dippf)Br][BF4], and the neutral species, [Re(CO)3(dippf)Br], are compared using X-ray crystallography, cyclic voltammetry, visible spectroscopy, IR spectroscopy and zero-field (57)Fe Mössbauer spectroscopy. In addition, the magnetic moment of the paramagnetic [Re(CO)3(dippf)Br][BF4] was measured in the solid state using SQUID magnetometry and in solution by the Evans method. The electron transfer reaction of [Re(CO)3(dippf)Br][BF4] with acetylferrocene was also examined. For additional comparison, the cationic compound, [Re(CO)3(dippc)Br][PF6] (dippc = 1,1'-bis(diiso-propylphosphino)cobaltocenium), was prepared and characterized by cyclic voltammetry, X-ray crystallography, and NMR, IR and visible spectroscopies. Finally, DFT was employed to examine the oxidized dippf ligand and the oxidized rhenium complex, [Re(CO)3(dippf)Br](+).

18.
J Am Chem Soc ; 138(7): 2235-43, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26799500

ABSTRACT

The one-electron reduction of ((tbs)L)Fe3(thf)¹ furnishes [M][((tbs)L)Fe3] ([M]⁺ = [(18-C-6)K(thf)2]⁺ (1, 76%) or [(crypt-222)K]⁺ (2, 54%)). Upon reduction, the ligand (tbs)L6⁻ rearranges around the triiron core to adopt an almost ideal C3-symmetry. Accompanying the ((tbs)L) ligand rearrangement, the THF bound to the neutral starting material is expelled, and the Fe-Fe distances within the trinuclear cluster contract by ∼0.13 Å in 1. Variable-temperature magnetic susceptibility data indicates a well-isolated S = 11/2 spin ground state that persists to room temperature. Slow magnetic relaxation is observed at low temperature as evidenced by the out-of-phase (χ(M)″) component of the alternating current (ac) magnetic susceptibility data and by the appearance of hyperfine splitting in the zero-field 57Fe Mössbauer spectra at 4.2 K. Analysis of the ac magnetic susceptibility yields an effective spin reversal barrier (U(eff)) of 22.6(2) cm⁻¹, nearly matching the theoretical barrier of 38.7 cm⁻¹ calculated from the axial zero-field splitting parameter (D = -1.29 cm⁻¹) extracted from the reduced magnetization data. A polycrystalline sample of 1 displays three sextets in the Mössbauer spectrum at 4.2 K (H(ext) = 0) which converge to a single six-line pattern in a frozen 2-MeTHF glass sample, indicating a unique iron environment and thus strong electron delocalization. The spin ground state and ligand rearrangement are discussed within the framework of a fully delocalized cluster exhibiting strong double and direct exchange interactions.


Subject(s)
Electrons , Iron Compounds/chemistry , Crystallography, X-Ray , Iron Compounds/chemical synthesis , Models, Molecular , Oxidation-Reduction , Quantum Theory , Spectroscopy, Mossbauer
19.
J Am Chem Soc ; 137(43): 13949-56, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26440452

ABSTRACT

The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (χ(M)T ≈ 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mössbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min).


Subject(s)
Iron Compounds/chemistry , Quantum Theory , Models, Molecular , Temperature
20.
J Am Chem Soc ; 137(34): 11126-43, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26231520

ABSTRACT

To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [((H)L)2Fe6(L')m](n+) in which the terminal ligand field strength was modulated from weak to strong (L' = DMF, MeCN, CN). The extent of intracore M-M interactions is gauged by M-M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [((H)L)2Fe6] core leads to weaker Fe-Fe interactions, as manifested by the observation of ground states populated only at lower temperatures (<100 K) and by the greater evidence of valence trapping within the mixed-valence states. Comproportionation constants determined electrochemically (Kc = 10(4)-10(8)) indicate that the redox series exhibits electronic delocalization (class II-III), yet no intervalence charge transfer (IVCT) bands are observable in the near-IR spectra. Ligation of the stronger σ donor acetonitrile results in stabilization of spin ground states to higher temperatures (∼300 K) and a high degree of valence delocalization (Kc = 10(2)-10(8)) with observable IVCT bands. Finally, the anionic cyanide-bound series reveals the highest degree of valence delocalization with the most intense IVCT bands (Kc = 10(12)-10(20)) and spin ground state population beyond room temperature. Across the series, at a given formal oxidation level, the capping ligand on the hexairon cluster dictates the overall properties of the aggregate, modulating the redox delocalization and the persistence of the intracore coupling of the metal sites.


Subject(s)
Electrons , Iron Compounds/chemistry , Iron Compounds/chemical synthesis , Ligands , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...