Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Syst ; 42(8): 134, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29915992

ABSTRACT

Early automatic breast cancer detection from mammograms is based on the extraction of lesions, known as microcalcifications (MCs). This paper proposes a new and simple system for microcalcification detection to assist in early breast cancer detection. This work uses the two most recognized public mammogram databases, MIAS and DDSM. We are introducing a MC detection method based on (1) Beucher gradient for detection of regions of interest (ROIs), (2) an annulus model for extraction of few and effective features from candidates to MCs, and (3) one classification stage with two different classifiers, k Nearest Neighbor (KNN) and Support Vector Machine (SVM). For dense mammograms in the MIAS database, the performance metrics achieved are sensitivity of 0.9835, false alarm rate of 0.0083, accuracy of 0.9835, and area under the ROC curve of 0.9980 with a KNN classifier. The proposed MC detection method, based on a KNN classifier, achieves, a sensitivity, false positive rate, accuracy and area under the ROC curve of 0.9813, 0.0224, 0.9795 and 0.9974 for the MIAS database; and 0.9035, 0.0439, 0.9298 and 0.9759 for the DDSM database. By slightly reducing the true positive rate the method achieves three instances with false positive rate of 0: 2 on fatty mammograms with KNN and SVM, and one on dense with SVM. The proposed method gives better results than those from state of the art literature, when the mammograms are classified in fatty, fatty-glandular, and dense.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Calcinosis/diagnostic imaging , Early Detection of Cancer , Humans , Mammography , Support Vector Machine
2.
Comput Med Imaging Graph ; 44: 41-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26245720

ABSTRACT

Diabetes increases the risk of developing any deterioration in the blood vessels that supply the retina, an ailment known as Diabetic Retinopathy (DR). Since this disease is asymptomatic, it can only be diagnosed by an ophthalmologist. However, the growth of the number of ophthalmologists is lower than the growth of the population with diabetes so that preventive and early diagnosis is difficult due to the lack of opportunity in terms of time and cost. Preliminary, affordable and accessible ophthalmological diagnosis will give the opportunity to perform routine preventive examinations, indicating the need to consult an ophthalmologist during a stage of non proliferation. During this stage, there is a lesion on the retina known as microaneurysm (MA), which is one of the first clinically observable lesions that indicate the disease. In recent years, different image processing algorithms, which allow the detection of the DR, have been developed; however, the issue is still open since acceptable levels of sensitivity and specificity have not yet been reached, preventing its use as a pre-diagnostic tool. Consequently, this work proposes a new approach for MA detection based on (1) reduction of non-uniform illumination; (2) normalization of image grayscale content to improve dependence of images from different contexts; (3) application of the bottom-hat transform to leave reddish regions intact while suppressing bright objects; (4) binarization of the image of interest with the result that objects corresponding to MAs, blood vessels, and other reddish objects (Regions of Interest-ROIs) are completely separated from the background; (5) application of the hit-or-miss Transformation on the binary image to remove blood vessels from the ROIs; (6) two features are extracted from a candidate to distinguish real MAs from FPs, where one feature discriminates round shaped candidates (MAs) from elongated shaped ones (vessels) through application of Principal Component Analysis (PCA); (7) the second feature is a count of the number of times that the radon transform of the candidate ROI, evaluated at the set of discrete angle values {0°, 1°, 2°, …, 180°}, is characterized by a valley between two peaks. The proposed approach is tested on the public databases DiaretDB1 and Retinopathy Online Challenge (ROC) competition. The proposed MA detection method achieves sensitivity, specificity and precision of 92.32%, 93.87% and 95.93% for the diaretDB1 database and 88.06%, 97.47% and 92.19% for the ROC database. Theory, results, challenges and performance related to the proposed MA detecting method are presented.


Subject(s)
Aneurysm/pathology , Diabetic Retinopathy/pathology , Fluorescein Angiography/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Retinoscopy/methods , Algorithms , Early Diagnosis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...