Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 170: 113014, 2023 08.
Article in English | MEDLINE | ID: mdl-37316081

ABSTRACT

Sacha Inchi seed oil (SIO) is rich in omega 3, 6, and 9 fatty acids with important health benefits, but is temperature sensitive. Spray drying is a technology that improves the long-term stability of bioactive compounds. This work aimed to study the effect of three different homogenization techniques on some physical properties and bioavailability of microcapsules of Sacha Inchi seed oil (SIO) emulsions obtained by spray drying. Emulsions were formulated with SIO (5%, w/w), maltodextrin:sodium caseinate as wall material (10%, w/w; 85:15), Tween 20 (1%, w/w) and Span 80 (0.5%, w/w) as surfactants and water up to 100% (w/w). Emulsions were prepared using high-speed (Dispermat D-51580, 18,000 rpm, 10 min), conventional (Mixer K-MLIM50N01, Turbo speed, 5 min), and ultrasound probe (Sonics Materials VCX 750, 35% amplitude, 750 W, 30 min) homogenization. SIO microcapsules were obtained in a Mini Spray B-290 (Büchi) using two inlet temperatures of the drying air (150 and 170 °C). Moisture, density, dissolution rate, hygroscopicity, drying efficiency (EY), encapsulation efficiency (EE), loading capacity, and oil release in digestive fluids in vitro were studied. Results showed that the microcapsules obtained by spray-drying had low moisture values and high encapsulation yield and efficiency values (greater than 50% and 70%, respectively). The thermogravimetric analysis indicates that heat protection was assured, enhancing the shelf life and the ability to withstand thermal food processing. Results suggest that spray-drying encapsulation could be a suitable technology to successfully microencapsulate SIO and enhance the absorption of bioactive compounds in the intestine. This work highlights the use of Latin American biodiversity and spray drying technology to ensure the encapsulation of bioactive compounds. This technology represents an opportunity for the development of new functional foods, improving the safety and quality of conventional foods.


Subject(s)
Euphorbiaceae , Functional Food , Capsules , Emulsions , Spray Drying , Plant Oils
2.
Sci Rep ; 11(1): 9359, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931665

ABSTRACT

Refractance window (RW) drying is considered an emerging technique in the food field due to its scalability, energy efficiency, cost and end-product quality. It can be used for obtaining flakes from high-oleic palm oil (HOPO) nanoemulsions containing a high concentration of temperature-sensitive active compounds. This work was thus aimed at studying the effect of temperature, thickness of the film drying, nanoemulsion process conditions, and emulsion formulation on the flakes' physical properties and microstructure. The results showed that HOPO flakes had good physical characteristics: 1.4% to 5.6% moisture content and 0.26 to 0.58 aw. Regarding microstructure, lower fractal dimension (FDt) was obtained when RW drying temperature increased, which is related to more regular surfaces. The results indicated that flakes with optimal physical properties can be obtained by RW drying of HOPO nanoemulsions.

3.
Food Funct ; 5(6): 1250-60, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24733518

ABSTRACT

High hydrostatic pressure (HHP) applied during food processing can improve the retention of food quality attributes and nutritional values in comparison with pasteurization. Persimmon is a good source of bioactive compounds but it is a seasonal fruit that cannot be consumed throughout the year. The aim of this work was to compare the HHP and pasteurization treatments to formulate milk-based beverages containing this carotenoid rich ingredient and to evaluate their performance in these beverages. The carotenoid and tannin contents of persimmon were determined and the microstructure and rheology of the new milk-based persimmon beverages were examined. The results showed that HHP treatment favoured the release of carotenoids from the fruit matrix and precipitation of the tannins. The milk-based beverages prepared with the high-pressure persimmon presented the best rheological properties because unlike the untreated and pasteurized persimmon milk-based beverages, they did not form a gel-like structure or separate out.


Subject(s)
Beverages/analysis , Dairy Products/analysis , Diospyros/chemistry , Food Handling/methods , Carotenoids/analysis , Freeze Drying , Fruit/chemistry , Hydrostatic Pressure , Microscopy, Confocal , Pasteurization , Rheology , Tannins/analysis
4.
J Food Sci ; 79(1): C32-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24313952

ABSTRACT

Rojo Brillante is an astringent oriental persimmon variety with high levels of bioactive compounds such as soluble tannins, carotenoids, phenolic acids, and dietary fiber. The purpose of this study was to investigate the effects of high hydrostatic pressure (HHP) and pasteurization on the structure of the fruit and on the extractability of certain bioactive compounds. The microstructure was studied using light microscopy, transmission electron microscopy, and low temperature scanning electron microscopy, and certain physicochemical properties (carotenoid and total soluble tannin content, antioxidant activity, fiber content, color, and texture properties) were measured. The structural changes induced by HHP caused a rise in solute circulation in the tissues that could be responsible for the increased carotenoid level and the unchanged antioxidant activity in comparison with the untreated persimmon. In contrast, the changes that took place during pasteurization lowered the tannin content and antioxidant activity. Consequently, HHP treatment could improve the extraction of potentially bioactive compoundsxsts from persimmons. A high nutritional value ingredient to be used when formulating new functional foods could be obtained using HHP.


Subject(s)
Diospyros/chemistry , Fruit/chemistry , Pasteurization , Antioxidants/analysis , Carotenoids/analysis , Chemical Phenomena , Cold Temperature , Color , Dietary Fiber/analysis , Food Handling , Hydrostatic Pressure , Hydroxybenzoates/analysis , Microscopy, Electron, Transmission , Nutritive Value , Polyphenols/analysis , Tannins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...