Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(24): 16568-16578, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29873361

ABSTRACT

While arsenous acid, As(OH)3, has been the subject of a plethora of studies due to its worldwide ubiquity and its toxicity, pentavalent As in the form of arsenic acid, AsO(OH)3, has recently been found in rivers in central Mexico as the most abundant naturally occurring arsenic species. To better understand the solvation patterns of both toxic acids at the molecular level, we report the results of Born-Oppenheimer molecular dynamics simulations on the aqueous solvation of the AsO(OH)3 and As(OH)3 molecules at room temperature using the cluster microsolvation approach including 30 water molecules at the B3LYP/6-31G** level of theory. We found that the average per-molecule water binding energy is ca. 1 kcal mol-1 larger for the As(v) species as compared to the As(iii) one. To account for the asymmetry of both molecules, the hydration patterns were studied separately for a "lower" hemisphere, defined by the initially protonated oxygens, and for the opposite "upper" hemisphere. Similar lower hydration patterns were found for both As(iii) and As(v), with the same coordination number CN = 7. The upper pattern for As(iii) was found to be of a hydrophobic type, whereas that for As(v) showed the fourth oxygen to be hydrogen-bonded to the water network, yielding CN = 3.7; moreover, a proton "hopped" from the lower to the upper side, through the Grotthuss mechanism. Theoretical EXAFS spectra were obtained that showed good agreement with experimental data for As(iii) and As(v) in liquid water, albeit with somewhat longer As-O distances due to the level of theory employed. Proton transfer processes were also addressed; we found that the singly deprotonated H2AsO3- species largely dominated (99% of the simulation) for the As(iii) case, and that the deprotonated H2AsO4- and HAsO42- species were almost equally present (45% and 55%, respectively) for the As(v) case, which is in line with the experimental data pKa1 = 2.24 and pKa2 = 6.96. Through vibrational analysis the features of the Eigen and Zundel ions were found in the spectra of the microsolvated As(iii) and As(v) species, in good agreement with experimental data in aqueous solutions.

2.
J Chem Phys ; 148(14): 144307, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29655339

ABSTRACT

The hydration features of [Mg(H2O)n]2+ and [Ca(H2O)n]2+ clusters with n = 3-6, 8, 18, and 27 were studied by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/6-31+G** level of theory. For both ions, it is energetically more favorable to have all water molecules in the first hydration shell when n ≤ 6, but stable lower coordination average structures with one water molecule not directly interacting with the ion were found for Mg2+ at room temperature, showing signatures of proton transfer events for the smaller cation but not for the larger one. A more rigid octahedral-type structure for Mg2+ than for Ca2+ was observed in all simulations, with no exchange of water molecules to the second hydration shell. Significant thermal effects on the average structure of clusters were found: while static optimizations lead to compact, spherically symmetric hydration geometries, the effects introduced by finite-temperature dynamics yield more prolate configurations. The calculated vibrational spectra are in agreement with infrared spectroscopy results. Previous studies proposed an increase in the coordination number (CN) from six to eight water molecules for [Ca(H2O)n]2+ clusters when n ≥ 12; however, in agreement with recent measurements of binding energies, no transition to a larger CN was found when n > 8. Moreover, the excellent agreement found between the calculated extended X-ray absorption fine structure spectroscopy spectra for the larger cluster and the experimental data of the aqueous solution supports a CN of six for Ca2+.

3.
J Phys Chem A ; 121(11): 2293-2297, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28266856

ABSTRACT

We report the results of Born-Oppenheimer molecular dynamics (BOMD) simulations on the aqueous solvation of the SmI2 molecule at room temperature using the cluster microsolvation approach including 32 water molecules. The electronic structure calculations were done using the M062X hybrid exchange-correlation functional in conjunction with the 6-31G** basis sets for oxygen and hydrogen. For the iodine and samarium atoms the Stuttgart-Köln relativistic effective-core potentials were utilized with their associated valence basis sets. Starting from the optimized geometry of SmI2 embeded in the microsolvation environment, we find a swift substitution of the iodine ions by eight tightly bound water molecules around Sm(II). Through the Sm-O radial distribution function and the evolution of the Sm-O distances, the present study predicts a first rigid Sm(II) solvation shell from 2.6 to 3.4 Å, whose integration leads to a coordination number of 8.4 water molecules, and a second softer solvation sphere from 3.5 to ca. 6 Å. The Sm(II)-O radial distribution function is in excellent agreement with that reported for Sr2+ from EXAFS studies, a fact that can be explained because Sr2+ and Sm2+ have almost identical ionic radii (ca. 1.26 Å) and coordination numbers: 8 for Sr2+ and 8.4 for Sm2+. The theoretical EXAFS spectrum was obtained from the BOMD trajectory and is discussed in the light of the experimental spectra for Sm(III). Once microsolvation is achieved, no water exchange events were found to occur around Sm2+, in agreement with the experimental data for Eu2+ (which has a nearly identical charge-to-ionic radius relation as Sm2+), where the mean residence time of a water molecule in [Eu(H2O)8]2+ is known to be ca. 230 ps.

4.
J Chem Phys ; 136(1): 014502, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22239784

ABSTRACT

A study of the solvation of HgCl(2) including ab initio aggregates of up to 24 water molecules and the results of extensive Monte Carlo simulations for the liquid phase using MP2-derived interaction potentials is presented. The interaction potentials are flexible, polarizable, and include non-additive effects. We conclude that a cluster description of the solvation mechanism is limited when compared to the condensed phase. The molecular image derived from the MC simulations is peculiar. It resembles that of a hydrophobic solute, which explains the rather easy passage of this neutral molecule through the cell membrane; however, it also shows an intermittent binding of one, two, or three water molecules to HgCl(2) in the fashion of a hydrophilic solute.


Subject(s)
Mercuric Chloride/chemistry , Quantum Theory , Solvents/chemistry , Water/chemistry , Monte Carlo Method , Solubility
5.
J Chem Phys ; 133(11): 114501, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20866139

ABSTRACT

A theoretical study of the hydration of arsenious acid is presented. This study included ab initio calculations and Monte Carlo simulations. The model potentials used for the simulations were ab initio derived and they include polarizability, nonadditivity, and molecular relaxation. It is shown that with these refined potentials it is possible to reproduce the available experimental evidence and therefore permit the study of clusters, as well as of the hydration process in solution. From the study of stepwise hydration and the Monte Carlo simulation of the condensed phase it is concluded that As(OH)(3) presents a hydration scheme similar to an amphipathic molecule. This phenomenon is explained as due to the existence of both a positive electrostatic potential and a localized lone pair in the vicinity of As. These results are used to rationalize the known passage of As(OH)(3) through aqua-glyceroporines.

6.
SELECTION OF CITATIONS
SEARCH DETAIL
...