Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(1): 338-354, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38109649

ABSTRACT

Absorbable metals exhibit potential for next-generation temporary medical implants, dissolving safely in the body during tissue healing and regeneration. Their commercial incorporation could substantially diminish the need for additional surgeries and complications that are tied to permanent devices. Despite extensive research on magnesium (Mg) and iron (Fe), achieving the optimal combination of mechanical properties, biocompatibility, and controlled degradation rate for absorbable implants remains a challenge. Zinc (Zn) and Zn-based alloys emerged as an attractive alternative for absorbable implants, due to favorable combination of in vivo biocompatibility and degradation behavior. Moreover, the development of suitable coatings can enhance their biological characteristics and tailor their degradation process. In this work, four different biodegradable coatings (based on zinc phosphate (ZnP), collagen (Col), and Ag-doped bioactive glass nanoparticles (AgBGNs)) were synthesized by chemical conversion, spin-coating, or a combination of both on Zn-3Mg substrates. This study assessed the impact of the coatings on in vitro degradation behavior, cytocompatibility, and antibacterial activity. The ZnP-coated samples demonstrated controlled weight loss and a decreased corrosion rate over time, maintaining a physiological pH. Extracts from the uncoated, ZnP-coated, and Col-AgBGN-coated samples showed higher cell viability with increasing concentration. Bacterial viability was significantly impaired in all coated samples, particularly in the Col-AgBGN coating. This study showcases the potential of a strategic material-coating combination to effectively tackle multiple challenges encountered in current medical implant technologies by modifying the properties of absorbable metals to tailor patient treatments.


Subject(s)
Coated Materials, Biocompatible , Magnesium , Humans , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Magnesium/pharmacology , Magnesium/chemistry , Alloys/pharmacology , Alloys/chemistry , Zinc/pharmacology , Absorbable Implants
2.
Acta Biomater ; 97: 1-22, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31351253

ABSTRACT

Absorbable metals have the potential to serve as the next generation of temporary medical implant devices by safely dissolving in the human body upon vascular tissue healing and bone regeneration. Their implementation in the market could greatly reduce the need of costly and risky additional surgeries for either implant replacement or removal, often required in current permanent implants. Despite the extensive research done over the last two decades on magnesium (Mg) and iron (Fe) based alloys, they have not generally shown a satisfactory combination of mechanical properties, biocompatibility and controlled degradation rate in the physiological environment. Consequently, zinc (Zn) based alloys were introduced in the last few years as alternative materials to overcome the limitations of Fe and Mg-based alloys. The blend of different alloying elements and processing conditions have led to a wide variety of Zn-based alloys having tunable mechanical properties and corrosion rates. This review provides the most recent progress in the development of absorbable Zn-based alloys for biomedical implant applications, primarily for cardiovascular and orthopedic devices. Their biocompatibility, processability and metallurgical aspects, as well as their mechanical behavior and corrosion properties are presented and discussed, including their opportunities, limitations and future research directions. STATEMENT OF SIGNIFICANCE: Temporary orthopedic bioimplants have become increasingly popular as they offer an alternative to prevent complications, like infections or secondary surgeries, often related to the implantation of permanent devices. Iron and magnesium alloys were extensively studied as candidates for absorbable medical applications, but they generally failed to provide a desirable mechanical performance and corrosion characteristics in the physiological environment. Zinc was introduced in the last decade as a potential implant material after showing outstanding biocompatibility and biodegradability. This review summarizes the research advances to date and provides a thorough discussion of the future challenges of absorbable zinc alloys to satisfy the demanding clinical benchmarks for absorbable medical applications. Their biocompatibility, mechanical, and corrosion aspects, both in vitro and in vivo, are comprehensively reviewed and assessed accordingly.


Subject(s)
Absorbable Implants , Alloys/therapeutic use , Biocompatible Materials/therapeutic use , Alloys/chemistry , Biocompatible Materials/chemistry , Corrosion , Humans , Iron/chemistry , Iron/therapeutic use , Magnesium/chemistry , Magnesium/therapeutic use , Zinc/chemistry , Zinc/therapeutic use
3.
Chemistry ; 24(27): 6992-7001, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29493820

ABSTRACT

The implementation of nanoparticles as nanomedicines requires sophisticated surface modifications to reduce the immune response and enhance recognition abilities. Mesoporous silica nanoparticles present extraordinary host-guest abilities and facile surface functionalization. These two factors make them ideal candidates for the development of novel drug-delivery systems, at the expense of increasing structural complexity. With this idea in mind, a system composed of triggerable and tunable silica nanoparticles was developed for application as drug-delivery nanocarriers. Diels-Alder cycloaddition adducts were chosen as thermal-responsive units that permitted the binding of gold nanocaps able to block the pores and allow the incorporation of targeting fragments. The capping efficiency was tested under different thermal conditions to give outstanding efficiencies within the physiological range and mild temperatures, as well as enhanced release under pulsing heating cycles, which showed the best release profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...