Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G306-G317, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35916405

ABSTRACT

The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.


Subject(s)
NF-kappa B p52 Subunit , Plasma Cells , Animals , Immunoglobulin A/metabolism , Immunoglobulins/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Plasma Cells/metabolism , Proteomics
3.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
4.
Nucleic Acids Res ; 49(11): 6399-6419, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34096591

ABSTRACT

sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA-mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.


Subject(s)
Bacillus subtilis/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Carbon/metabolism , Genetic Fitness , Proteome , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Small Untranslated/biosynthesis , RNA, Small Untranslated/genetics , RNA, Small Untranslated/physiology , Transcription, Genetic
5.
Environ Microbiol ; 22(4): 1356-1369, 2020 04.
Article in English | MEDLINE | ID: mdl-32079039

ABSTRACT

Pristine marine environments are highly oligotrophic ecosystems populated by well-established specialized microbial communities. Nevertheless, during oil spills, low-abundant hydrocarbonoclastic bacteria bloom and rapidly prevail over the marine microbiota. The genus Alcanivorax is one of the most abundant and well-studied organisms for oil degradation. While highly successful under polluted conditions due to its specialized oil-degrading metabolism, it is unknown how they persist in these environments during pristine conditions. Here, we show that part of the Alcanivorax genus, as well as oils, has an enormous potential for biodegrading aliphatic polyesters thanks to a unique and abundantly secreted alpha/beta hydrolase. The heterologous overexpression of this esterase proved a remarkable ability to hydrolyse both natural and synthetic polyesters. Our findings contribute to (i) better understand the ecology of Alcanivorax in its natural environment, where natural polyesters such as polyhydroxyalkanoates (PHA) are produced by a large fraction of the community and, hence, an accessible source of carbon and energy used by the organism in order to persist, (ii) highlight the potential of Alcanivorax to clear marine environments from polyester materials of anthropogenic origin as well as oils, and (iii) the discovery of a new versatile esterase with a high biotechnological potential.


Subject(s)
Alcanivoraceae/enzymology , Biodegradation, Environmental , Oils/metabolism , Alcanivoraceae/classification , Alcanivoraceae/metabolism , Biotechnology , Ecosystem , Petroleum Pollution , Polyesters/metabolism , Polyhydroxyalkanoates/metabolism
6.
Proteomics ; 18(23): e1800236, 2018 12.
Article in English | MEDLINE | ID: mdl-30259661

ABSTRACT

The in-gel digestion of proteins for analysis by liquid chromatograph mass spectrometry has been used since the early 1990s. Although several improvements have contributed to increasing the quality of the data obtained, many recent publications still use sub-optimal approaches. Updates of the in-gel digestion protocol has been presented in the study. It has been shown that alternative reducing, alkylating agent reactions, and tryptic digestion buffers increase peptide and protein identification and reduce incubation times. The results indicate that a simultaneous and short, high temperature reduction and alkylation reaction using Tris(2-carboxyethyl)phosphine hydrochloride and chloroacetamide with a subsequent gel wash improve protein identification and sequence coverage, and diminish peptide side reactions. Additionally, use of 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer allows a significant reduction in the digestion time improving trypsin performance and increasing the peptide recovery. The updates of the in-gel digestion protocol described here are efficient and offer flexibility to be incorporated in any proteomic laboratory.


Subject(s)
Proteomics/methods , Mass Spectrometry , Temperature , Trypsin/chemistry
7.
Environ Microbiol ; 20(2): 785-799, 2018 02.
Article in English | MEDLINE | ID: mdl-29194907

ABSTRACT

Marine phototroph and heterotroph interactions are vital in maintaining the nutrient balance in the oceans as essential nutrients need to be rapidly cycled before sinking to aphotic layers. The aim of this study was to highlight the molecular mechanisms that drive these interactions. For this, we generated a detailed exoproteomic time-course analysis of a 100-day co-culture between the model marine picocyanobacterium Synechococcus sp. WH7803 and the Roseobacter strain Ruegeria pomeroyi DSS-3, both in nutrient-enriched and natural oligotrophic seawater. The proteomic data showed a transition between the initial growth phase and stable-state phase that, in the case of the heterotroph, was caused by a switch in motility attributed to organic matter availability. The phototroph adapted to seawater oligotrophy by reducing its selective leakiness, increasing the acquisition of essential nutrients and secreting conserved proteins of unknown function. We also report a surprisingly high abundance of extracellular superoxide dismutase produced by Synechococcus and a dynamic secretion of potential hydrolytic enzyme candidates used by the heterotroph to cleave organic groups and hydrolase polymeric organic matter produced by the cyanobacterium. The time course dataset we present here will become a reference for understanding the molecular processes underpinning marine phototroph-heterotroph interactions.


Subject(s)
Heterotrophic Processes/physiology , Microbial Interactions/physiology , Phototrophic Processes/physiology , Roseobacter/metabolism , Synechococcus/metabolism , Coculture Techniques , Oceans and Seas , Proteomics , Seawater/microbiology , Superoxide Dismutase/biosynthesis
8.
Nat Commun ; 8: 14206, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198360

ABSTRACT

The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.


Subject(s)
Chloride Channels/metabolism , Disease Progression , Glutathione/metabolism , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Extracellular Matrix/metabolism , Female , GTP-Binding Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Mice, Nude , Models, Biological , Neoplasm Invasiveness , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Oxidoreductases/metabolism , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2 , Proteome/metabolism , Proteomics , Survival Analysis , Transglutaminases/metabolism , Treatment Outcome
9.
Mol Cell Proteomics ; 14(3): 621-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25573745

ABSTRACT

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Subject(s)
Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Endothelial Cells/metabolism , Fatty Acids/metabolism , Metabolome , Models, Biological , Proteomics/methods , Adenosine Triphosphate/metabolism , Animals , Endothelial Cells/cytology , Epoxy Compounds/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Mice , Oxidation-Reduction , Oxygen Consumption , Permeability
10.
Int J Hypertens ; 2013: 164653, 2013.
Article in English | MEDLINE | ID: mdl-23401751

ABSTRACT

The aim of the present work is to analyze the cerebrospinal fluid proteomic profile, trying to find possible biomarkers of the effects of hypertension of the blood to CSF barrier disruption in the brain and their participation in the cholesterol and ß-amyloid metabolism and inflammatory processes. Cerebrospinal fluid (CSF) is a system linked to the brain and its composition can be altered not only by encephalic disorder, but also by systemic diseases such as arterial hypertension, which produces alterations in the choroid plexus and cerebrospinal fluid protein composition. 2D gel electrophoresis in cerebrospinal fluid extracted from the cistern magna before sacrifice of hypertensive and control rats was performed. The results showed different proteomic profiles between SHR and WKY, that α-1-antitrypsin, apolipoprotein A1, albumin, immunoglobulin G, vitamin D binding protein, haptoglobin and α-1-macroglobulin were found to be up-regulated in SHR, and apolipoprotein E, transthyretin, α-2-HS-glycoprotein, transferrin, α-1ß-glycoprotein, kininogen and carbonic anhidrase II were down-regulated in SHR. The conclusion made here is that hypertension in SHR produces important variations in cerebrospinal fluid proteins that could be due to a choroid plexus dysfunction and this fact supports the close connection between hypertension and blood to cerebrospinal fluid barrier disruption.

11.
FASEB J ; 26(1): 430-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21990378

ABSTRACT

Chromogranins are the main soluble proteins in the large dense core secretory vesicles (LDCVs) found in aminergic neurons and chromaffin cells. We recently demonstrated that chromogranins A and B each regulate the concentration of adrenaline in chromaffin granules and its exocytosis. Here we have further studied the role played by these proteins by generating mice lacking both chromogranins. Surprisingly, these animals are both viable and fertile. Although chromogranins are thought to be essential for their biogenesis, LDCVs were evident in these mice. These vesicles do have a somewhat atypical appearance and larger size. Despite their increased size, single-cell amperometry recordings from chromaffin cells showed that the amine content in these vesicles is reduced by half. These data demonstrate that although chromogranins regulate the amine concentration in LDCVs, they are not completely essential, and other proteins unrelated to neurosecretion, such as fibrinogen, might compensate for their loss to ensure that vesicles are generated and the secretory pathway conserved.


Subject(s)
Catecholamines/metabolism , Chromaffin Cells/physiology , Chromogranin A/genetics , Chromogranin B/genetics , Secretory Pathway/physiology , Adrenal Medulla/cytology , Adrenal Medulla/physiology , Animals , Cells, Cultured , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Chromogranin A/metabolism , Chromogranin B/metabolism , Cytosol/metabolism , Dopamine Agents/pharmacology , Female , Levodopa/pharmacology , Male , Membrane Potentials/physiology , Mice , Mice, Knockout , Phenotype , Pregnancy , Secretory Pathway/drug effects , Tyrosine 3-Monooxygenase/metabolism
12.
FEBS J ; 277(22): 4766-74, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20977670

ABSTRACT

Mutations in the alanine-glyoxylate aminotransferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. A deeper understanding of the changes in the metabolic pathways secondary to the lack of AGXT expression is needed in order to explore substrate depletion as a therapeutic strategy to limit oxalate production in primary hyperoxaluria type I. We have developed an Agxt knockout (AgxtKO) mouse that reproduces some key features of primary hyperoxaluria type I. To improve our understanding of the metabolic adjustments subsequent to AGXT deficiency, we performed a proteomic analysis of the changes in expression levels of various subcellular fractions of liver and kidney metabolism linked to the lack of AGXT. In this article, we report specific changes in the liver and kidney proteome of AgxtKO mice that point to significant variations in gluconeogenesis, glycolysis and fatty acid pathways.


Subject(s)
Hyperoxaluria, Primary/enzymology , Hyperoxaluria, Primary/genetics , Kidney/metabolism , Liver/metabolism , Transaminases/genetics , Animals , Electrophoresis, Gel, Two-Dimensional , Humans , Hyperoxaluria, Primary/therapy , Kidney/chemistry , Liver/chemistry , Male , Mice , Mice, Knockout , Mutation , Oxalates/metabolism , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Subcellular Fractions/chemistry , Transaminases/metabolism
13.
J Neurosci ; 30(3): 950-7, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20089903

ABSTRACT

Chromogranins/secretogranins (Cgs) are the major soluble proteins of large dense-core secretory vesicles (LDCVs). We have recently reported that the absence of chromogranin A (CgA) caused important changes in the accumulation and in the exocytosis of catecholamines (CAs) using a CgA-knock-out (CgA-KO) mouse. Here, we have analyzed a CgB-KO mouse strain that can be maintained in homozygosis. These mice have 36% less adrenomedullary epinephrine when compared to Chgb(+/+) [wild type (WT)], whereas the norepinephrine content was similar. The total evoked release of CA was 33% lower than WT mice. This decrease was not due to a lower frequency of exocytotic events but to less secretion per quantum (approximately 30%) measured by amperometry; amperometric spikes exhibited a slower ascending but a normal decaying phase. Cell incubation with L-DOPA increased the vesicle CA content of WT but not of the CgB-KO cells. Intracellular electrochemistry, using patch amperometry, showed that L-DOPA overload produced a significantly larger increase in cytosolic CAs in cells from the KO animals than chromaffin cells from the WT. These data indicate that the mechanisms for vesicular accumulation of CAs in the CgB-KO cells were saturated, while there was ample capacity for further accumulation in WT cells. Protein analysis of LDCVs showed the overexpression of CgA as well as other proteins apparently unrelated to the secretory process. We conclude that CgB, like CgA, is a highly efficient system directly involved in monoamine accumulation and in the kinetics of exocytosis from LDCVs.


Subject(s)
Catecholamines/metabolism , Chromaffin Cells/ultrastructure , Chromogranin B/deficiency , Exocytosis/genetics , Secretory Vesicles/metabolism , Adrenal Glands/cytology , Animals , Chromaffin Cells/drug effects , Chromaffin Cells/metabolism , Chromatography, High Pressure Liquid/methods , Dopamine Agents/pharmacology , Electrochemistry/methods , Electrophoresis, Gel, Two-Dimensional/methods , Exocytosis/drug effects , Levodopa/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Secretory Vesicles/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...