Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 8(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31546997

ABSTRACT

The effects of nanoparticles (NPs) on plants are contrasting; these depend on the model plant, the synthesis of the nanoparticles (concentration, size, shape), and the forms of application (foliar, substrate, seeds). For this reason, the objective of this study was to report the impact of different concentrations of selenium (Se) and copper (Cu) NPs on yield, antioxidant capacity, and quality of tomato fruit. The different concentrations of Se and Cu NPs were applied to the substrate every 15 days (five applications). The yield was determined until day 102 after the transplant. Non-enzymatic and enzymatic antioxidant compounds were determined in the leaves and fruits as well as the fruit quality at harvest. The results indicate that tomato yield was increased by up to 21% with 10 mg L-1 of Se NPs. In leaves, Se and Cu NPs increased the content of chlorophyll, vitamin C, glutathione, 2,2'-azino-bis(3-ethylbenzthiazolin-6-sulfonic acid (ABTS), superoxide dismutase (SOD), glutathione peroxidase (GPX) and phenylalanine ammonia liasa (PAL). In fruits, they increased vitamin C, glutathione, flavonoids, firmness, total soluble solids, and titratable acidity. The combination of Se and Cu NPs at optimal concentrations could be a good alternative to improve tomato yield and quality, but more studies are needed to elucidate their effects more clearly.

2.
Molecules ; 23(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337864

ABSTRACT

Chitosan is a natural polymer, which has been used in agriculture to stimulate crop growth. Furthermore, it has been used for the encapsulation of nanoparticles in order to obtain controlled release. In this work, the effect of chitosan-PVA and Cu nanoparticles (Cu NPs) absorbed on chitosan-PVA on growth, antioxidant capacity, mineral content, and saline stress in tomato plants was evaluated. The results show that treatments with chitosan-PVA increased tomato growth. Furthermore, chitosan-PVA increased the content of chlorophylls a and b, total chlorophylls, carotenoids, and superoxide dismutase. When chitosan-PVA was mixed with Cu NPs, the mechanism of enzymatic defense of tomato plants was activated. The chitosan-PVA and chitosan-PVA + Cu NPs increased the content of vitamin C and lycopene, respectively. The application of chitosan-PVA and Cu NPs might induce mechanisms of tolerance to salinity.


Subject(s)
Antioxidants/metabolism , Chitosan/chemistry , Copper/chemistry , Metal Nanoparticles , Salinity , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Stress, Physiological , Chlorophyll/metabolism , Fruit/growth & development , Fruit/metabolism , Minerals/metabolism , Phytochemicals/chemistry , Pigments, Biological , Plant Leaves , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...