Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4868, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35318341

ABSTRACT

A practical solution to the problems caused by the water, air, and soil pollution produced by the large volumes of waste is recycling. Plastic and glass bottle recycling is a practical solution but sometimes unfeasible in underdeveloped countries. In this paper, we propose a high-performance real-time hardware architecture for bottle classification, that process input image bottles to generate a bottle color as output. The proposed architecture was implemented on a Spartan-6 Field Programmable Gate Array, using a Hardware Description Language. The proposed system was tested for several input resolutions up to 1080 p, but it is flexible enough to support input video resolutions up to 8 K. There is no evidence of a high-performance bottle classification system in the state-of-the-art. The main contribution of this paper is the implementation and integration of a set of dedicated image processing blocks in a high-performance real-time bottle classification system. These hardware modules were integrated into a compact and tunable architecture, and was tested in a simulated environment. Concerning the image processing algorithm implemented in the FPGA, the maximum processing rate is 60 frames per second. In practice, the maximum number of bottles that can be processed would be limited by the mechanical aspects of the bottle transportation system.

2.
IEEE Trans Biomed Eng ; 55(2 Pt 1): 541-53, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18269989

ABSTRACT

Cancers located on the internal wall of bladders can be detected in image sequences acquired with endoscopes. The clinical diagnosis and follow-up can be facilitated by building a unique panoramic image of the bladder with the images acquired from different viewpoints. This process, called image mosaicing, consists of two steps. In the first step, consecutive images are pairwise registered to find the local transformation matrices linking geometrically consecutive images. In the second step, all images are placed in a common and global coordinate system. In this contribution, a mutual information-based similarity measure and a stochastic gradient optimization method were implemented in the registration process. However, the images have to be preprocessed in order to register the data in a robust way. Thus, a simple correction method of the distortions affecting endoscopic images is presented. After the placement of all images in the global coordinate system, the parameters of the local transformation matrices are all adjusted to improve the visual aspect of the panoramic images. Phantoms are used to evaluate the global mosaicing accuracy and the limits of the registration algorithm. The mean distances between ground truth positions in the mosaiced image range typically in 1-3 pixels. Results given for in vivo patient data illustrate the ability of the algorithm to give coherent panoramic images in the case of bladders.


Subject(s)
Algorithms , Artifacts , Endoscopy/methods , Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Urinary Bladder Neoplasms/pathology , Urinary Bladder/pathology , Humans , Image Enhancement/methods , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...