Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328562

ABSTRACT

SARS-CoV-2 variants surveillance is a worldwide task that has been approached with techniques such as Next Generation Sequencing (NGS); however, this technology is not widely available in developing countries because of the lack of equipment and limited funding in science. An option is to deploy a RT-qPCR screening test which aids in the analysis of a higher number of samples, in a shorter time and at a lower cost. In this study, variants present in samples positive for SARS-CoV-2 were identified with a RT-qPCR mutation screening kit and were later confirmed by NGS. A sample with an abnormal result was found with the screening test, suggesting the simultaneous presence of two viral populations with different mutations. The DRAGEN Lineage analysis identified the Delta variant, but there was no information about the other three mutations previously detected. When the sequenced data was deeply analyzed, there were reads with differential mutation patterns, that could be identified and classified in terms of relative abundance, whereas only the dominant population was reported by DRAGEN software. Since most of the software developed to analyze SARS-CoV-2 sequences was aimed at obtaining the consensus sequence quickly, the information about viral populations within a sample is scarce. Here, we present a faster and deeper SARS-CoV-2 surveillance method, from RT-qPCR screening to NGS analysis.


Subject(s)
COVID-19/diagnosis , DNA Mutational Analysis/methods , Genome, Viral/genetics , Mutation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
2.
Braz J Microbiol ; 49 Suppl 1: 269-275, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30145263

ABSTRACT

Fusarium oxysporum f. sp. lycopersici is a phytopathogenic fungus that causes vascular wilt in tomato plants. In this work we analyze the influence of metal salts such as iron and copper sulphate, as well as that of bathophenanthrolinedisulfonic acid (iron chelator) and bathocuproinedisulfonic acid (copper chelator) on the activity of laccases in the intra (IF) and extracellular fractions (EF) of the wild-type and the non-pathogenic mutant strain (rho1::hyg) of F. oxysporum. The results show that laccase activity in the IF fraction of the wild and mutant strain increased with the addition of iron chelator (53.4 and 114.32%; respectively). With copper, it is observed that there is an inhibition of the activity with the addition of CuSO4 for the EF of the wild and mutant strain (reduction of 82 and 62.6%; respectively) and for the IF of the mutant strain (54.8%). With the copper chelator a less laccase activity in the IF of the mutant strain was observed (reduction of 53.9%). The results obtained suggest a different regulation of intracellular laccases in the mutant strain compared with the wild type in presence of CuSO4 and copper chelator which may be due to the mutation in the rho gene.


Subject(s)
Copper/metabolism , Fungal Proteins/metabolism , Fusarium/enzymology , Iron/metabolism , Laccase/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fusarium/chemistry , Fusarium/genetics , Laccase/chemistry , Laccase/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469669

ABSTRACT

ABSTRACT Fusarium oxysporum f. sp. lycopersici is a phytopathogenic fungus that causes vascular wilt in tomato plants. In this work we analyze the influence of metal salts such as iron and copper sulphate, as well as that of bathophenanthrolinedisulfonic acid (iron chelator) and bathocuproinedisulfonic acid (copper chelator) on the activity of laccases in the intra (IF) and extracellular fractions (EF) of the wild-type and the non-pathogenic mutant strain (rho1::hyg) of F. oxysporum. The results show that laccase activity in the IF fraction of the wild and mutant strain increased with the addition of iron chelator (53.4 and 114.32%; respectively). With copper, it is observed that there is an inhibition of the activity with the addition of CuSO4 for the EF of the wild and mutant strain (reduction of 82 and 62.6%; respectively) and for the IF of the mutant strain (54.8%). With the copper chelator a less laccase activity in the IF of the mutant strain was observed (reduction of 53.9%). The results obtained suggest a different regulation of intracellular laccases in the mutant strain compared with the wild type in presence of CuSO4 and copper chelator which may be due to the mutation in the rho gene.

4.
Braz. j. microbiol ; 49(supl.1): 269-275, 2018. tab, graf
Article in English | LILACS | ID: biblio-974344

ABSTRACT

ABSTRACT Fusarium oxysporum f. sp. lycopersici is a phytopathogenic fungus that causes vascular wilt in tomato plants. In this work we analyze the influence of metal salts such as iron and copper sulphate, as well as that of bathophenanthrolinedisulfonic acid (iron chelator) and bathocuproinedisulfonic acid (copper chelator) on the activity of laccases in the intra (IF) and extracellular fractions (EF) of the wild-type and the non-pathogenic mutant strain (rho1::hyg) of F. oxysporum. The results show that laccase activity in the IF fraction of the wild and mutant strain increased with the addition of iron chelator (53.4 and 114.32%; respectively). With copper, it is observed that there is an inhibition of the activity with the addition of CuSO4 for the EF of the wild and mutant strain (reduction of 82 and 62.6%; respectively) and for the IF of the mutant strain (54.8%). With the copper chelator a less laccase activity in the IF of the mutant strain was observed (reduction of 53.9%). The results obtained suggest a different regulation of intracellular laccases in the mutant strain compared with the wild type in presence of CuSO4 and copper chelator which may be due to the mutation in the rho gene.


Subject(s)
Fungal Proteins/metabolism , Copper/metabolism , Laccase/metabolism , Fusarium/enzymology , Iron/metabolism , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/chemistry , Solanum lycopersicum/microbiology , Laccase/genetics , Laccase/chemistry , Fusarium/genetics , Fusarium/chemistry
5.
Appl Biochem Biotechnol ; 175(2): 902-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25349089

ABSTRACT

Fusarium oxysporum f. sp. lycopersici is a fungus responsible for the tomato disease known as fusariosis. Enolase, which is the enzyme that catalyzes the reaction of 2-phosphoglycerate to phosphoenolpyruvate, is present during glycolysis. Enolase genes have been isolated from bacteria and fungi, among other organisms. In this research, a large portion of the enolase, eno, gene sequence was isolated from F. oxysporum and compared with those of other microorganisms, revealing a similarity of 51-69 %. We analyzed the copy number of the eno gene and determined that only a single copy is present in F. oxysporum, as in several fungi, such as Candida albicans and Aspergillus oryzae. We also detected the expression of the eno gene by reverse transcription-polymerase chain reaction during in vitro growth under two growth conditions where glucose was used as the carbon source, and we observed the same eno gene expression levels under both growth conditions.


Subject(s)
Fusarium/enzymology , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/isolation & purification , Amino Acid Sequence , Fusarium/genetics , Fusarium/growth & development , Gene Expression , Molecular Sequence Data , Phosphopyruvate Hydratase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...