Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 591(2): 376-81, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27312951

ABSTRACT

Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.


Subject(s)
Cardiovascular Physiological Phenomena/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , PPAR gamma/genetics , Pregnancy, Animal/physiology , Animals , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Heart Ventricles/enzymology , Heart Ventricles/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Organ Size , PPAR gamma/metabolism , Pregnancy , RNA, Messenger , Rats , Rats, Sprague-Dawley , Transcription, Genetic
2.
Article in English | MEDLINE | ID: mdl-26219579

ABSTRACT

Crustaceans overcome osmotic disturbances by regulating their intracellular concentration of ions and osmolytes. Glycine betaine (GB), an osmolyte accumulated in response to hyperosmotic stress, is synthesized by betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) through the oxidation of betaine aldehyde. A partial BADH cDNA sequence from the white shrimp Litopenaeus vannamei was obtained and its organ-specific expression during osmotic stress (low and high salinity) was evaluated. The partial BADH cDNA sequence (LvBADH) is 1103bp long and encodes an open reading frame for 217 protein residues. The amino acid sequence of LvBADH is related to that of other BADHs, TMABA-DH and ALDH9 from invertebrate and vertebrate homologues, and includes the essential domains of their function and regulation. LvBADH activity and mRNA expression were detected in the gills, hepatopancreas and muscle with the highest levels in the hepatopancreas. LvBADH mRNA expression increased 2-3-fold in the hepatopancreas and gills after 7days of osmotic variation (25 and 40ppt). In contrast, LvBADH mRNA expression in muscle decreased 4-fold and 15-fold after 7days at low and high salinity, respectively. The results indicate that LvBADH is ubiquitously expressed, but its levels are organ-specific and regulated by osmotic stress, and that LvBADH is involved in the cellular response of crustaceans to variations in environmental salinity.


Subject(s)
Betaine-Aldehyde Dehydrogenase/genetics , Betaine-Aldehyde Dehydrogenase/metabolism , Decapoda/genetics , Amino Acid Sequence , Animals , Base Sequence , Betaine-Aldehyde Dehydrogenase/chemistry , DNA, Complementary/chemistry , DNA, Complementary/genetics , Decapoda/enzymology , Decapoda/metabolism , Molecular Sequence Data , Organ Specificity , Osmotic Pressure , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...