Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28864221

ABSTRACT

One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown. In the present work, the antigen has been characterized by immunoprecipitation, tandem mass spectrometry, and cDNA cloning. The RN1 antigen contains a START lipid-binding domain found in Steroidogenic Acute Regulatory (StAR) proteins and other lipid-binding proteins. Phylogenetic tree assembly showed that the START domain is highly conserved among echinoderms. We have named this antigen HgSTARD10 for its high sequence similarity to the vertebrate orthologs. Gene and protein expression analyses revealed an abundance of HgSTARD10 in most H. glaberrima tissues including radial nerve, intestine, muscle, esophagus, mesentery, hemal system, gonads and respiratory tree. Molecular cloning of HgSTARD10, consequent protein expression and polyclonal antibody production revealed the STARD10 ortholog as the antigen recognized by the RN1 antibody. Further characterization into this START domain-containing protein will provide important insights for the biochemistry, physiology and evolution of deuterostomes.


Subject(s)
Holothuria/genetics , Nerve Tissue Proteins/genetics , Nervous System/metabolism , Neurons/metabolism , Phosphoproteins/genetics , Amino Acid Sequence , Animals , Antibodies/chemistry , Binding Sites , Biomarkers/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Holothuria/classification , Holothuria/metabolism , Nerve Tissue Proteins/metabolism , Nervous System/cytology , Neurons/cytology , Organ Specificity , Phosphoproteins/metabolism , Phylogeny , Protein Binding , Protein Interaction Domains and Motifs , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
2.
J Exp Zool B Mol Dev Evol ; 328(3): 259-274, 2017 05.
Article in English | MEDLINE | ID: mdl-28229527

ABSTRACT

Melanotransferrin (MTf) is a protein associated with oncogenetic, developmental, and immune processes which function remains unclear. The MTf gene has been reported in numerous vertebrate and invertebrate species, including echinoderms. We now report the finding of four different MTfs in the transcriptome of the sea cucumber Holothuria glaberrima. Sequence studies and phylogenetic analyses were done to ascertain the similarities among the putative proteins and their relationship with other transferrin family members. The genes were shown to be differentially expressed in various holothurian organs and to respond differently when the animals were challenged with the immune system activator lipopolysaccharide (LPS). Moreover, the four genes were found to be highly overexpressed during the early stages of intestinal regeneration. The finding of four different genes in the holothurian is particularly surprising, because only one MTf gene has been reported in all other animal species sequenced to date. This finding, combined with the increase expression during intestinal regeneration, suggests a new possible function of MTf in organ regenerative processes.


Subject(s)
Intestines/growth & development , Metalloproteins/genetics , Regeneration/genetics , Sea Cucumbers/genetics , Animals , Gene Expression Regulation, Developmental , Intestinal Mucosa/metabolism , Metalloproteins/metabolism , Sea Cucumbers/growth & development
3.
BMC Genomics ; 10: 262, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19505337

ABSTRACT

BACKGROUND: Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools.For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. RESULTS: In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. CONCLUSION: Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes.


Subject(s)
Gene Expression Profiling , Intestines/physiology , Regeneration , Sea Cucumbers/genetics , Animals , Expressed Sequence Tags , Gene Library , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...