Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(25): 10127-10133, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38867513

ABSTRACT

3D printing technology is a tremendously powerful technology to fabricate electrochemical sensing devices. However, current conductive filaments are not aimed at electrochemical applications and therefore require intense activation protocols to unleash a suitable electrochemical performance. Current activation methods based on (electro)chemical activation (using strong alkaline solutions and organic solvents and/or electrochemical treatments) or combined approaches are time-consuming and require hazardous chemicals and dedicated operator intervention. Here, pioneering spark-discharge-activated 3D-printed electrodes were developed and characterized, and it was demonstrated that their electrochemical performance was greatly improved by the effective removal of the thermoplastic support polylactic acid (PLA) as well as the formation of sponge-like and low-dimensional carbon nanostructures. This reagent-free approach consists of a direct, fast, and automatized spark discharge between the 3D-electrode and the respective graphite pencil electrode tip using a high-voltage power supply. Activated electrodes were challenged toward the simultaneous voltammetric determination of dopamine (DP) and serotonin (5-HT) in cell culture media. Spark discharge has been demonstrated as a promising approach for conductive filament activation as it is a fast, green (0.94 GREEnness Metric Approach), and automatized procedure that can be integrated into the 3D printing pipeline.

2.
Anal Chem ; 95(51): 18679-18684, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38095628

ABSTRACT

Three-dimensional (3D) printing technology has emerged as a powerful technology for the fabrication of low-cost microfluidics. Nevertheless, the fabrication of microfluidic devices integrating high-performance electrochemical sensors in practical applications is still an open challenge. Although automatic fabrication of the microfluidic device and the electrodes can be successfully carried out using a one-step multimaterial fused filament fabrication (FFF) approach, the as-printed electrochemical performance of these electrodes is not good enough for chemical (bio)sensing and their surface modification is challenging because after closing the channel there is no physical access to the electrode. Thus, here a pause-print-pause (PPP) microfabrication approach was implemented. The fabrication was paused before printing the microfluidics, and the filament-based electrodes were directly modified on the printing bed via stencil printing, drop casting, and electrodeposition. To exemplify this versatile workflow, the design of a microfluidic glucose sensor was proposed. To this end, first, the working and counter electrodes were stencil printed with graphite ink while the reference electrode was stencil printed with Ag|AgCl ink. Then, Prussian blue was formed on the working electrode either by drop casting or by electrodeposition, and glucose oxidase was drop cast on top. At this point, the microfabrication process was resumed, and the microfluidics were printed on top of the modified electrodes to complete the construction of hybrid electrochemical fluidic fused filament fabricated devices (h-eF4Ds). This print-pause-print approach is not limited to ink-based electrodes or glucose oxidase, and we envisage these results will pave the way for the effective integration of electrodes in microfluidic devices in a simple and clean-room-free approach, allowing the development of highly customized eF4Ds for a plethora of analytes with high significance.

3.
Lab Chip ; 22(24): 4805-4821, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36342332

ABSTRACT

Organ on-a-chip (OoC) is a promising technology that aims to recapitulate human body pathophysiology in a more precise way to advance in drug development and complex disease understanding. However, the presence of OoC in biological laboratories is still limited and mainly restricted to laboratories with access to cleanroom facilities. Besides, the current analytical methods employed to extract information from the organ models are endpoint and post facto assays which makes it difficult to ensure that during the biological experiment the cell microenvironment, cellular functionality and behaviour are controlled. Hence, the integration of real-time biosensors is highly needed and requested by the OoC end-user community to provide insight into organ function and responses to stimuli. In this context, electrochemical sensors stand out due to their advantageous features like miniaturization capabilities, ease of use, automatization and high sensitivity and selectivity. Electrochemical sensors have been already successfully miniaturized and employed in other fields such as wearables and point-of-care devices. We have identified that the explanation for this issue may be, to a large extent, the accessibility to microfabrication technologies. These fields employ preferably digital manufacturing (DM), which is a more accessible microfabrication approach regardless of funding and facilities. Therefore, we envision that a paradigm shift in microfabrication that adopts DM instead of the dominating soft lithography for the in-lab microfabrication of OoC devices will contribute to the dissemination of the field and integration of the promising real-time sensing.


Subject(s)
Microphysiological Systems , Microtechnology , Humans
5.
Mikrochim Acta ; 189(3): 102, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35152341

ABSTRACT

The ubiquity and importance of ROS and RNS in cellular signaling, disease development, and death give rise to an outstanding interest in their detection and quantification. Among the analytical techniques available, electrochemical sensors stand out for the detection of ROS/RNS due to their high sensitivity and inherent miniaturization which allows the in situ and real-time detection together with a tunable selectivity due to the different electrochemical behavior of ROS/RNS. Nanomaterial-based enzyme-free electrochemical sensors possess improved sensitivity, selectivity, stability, and unique catalytic activities. In addition, their integration in nanoelectrodes, lab-on-chips, microfluidic systems, and stretchable electrodes allow the determination of ROS/RNS in individual cells, cell organelles, or cell populations, under different experimental conditions hardly accessible using classical detection methods.


Subject(s)
Electrochemical Techniques , Reactive Nitrogen Species/analysis , Reactive Oxygen Species/analysis , Animals , Cells, Cultured , Humans , Nanostructures/chemistry , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
7.
Biosens Bioelectron ; 170: 112669, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33035897

ABSTRACT

A Prussian blue-based electrode array (PBEA) constituted by eight stencil-printed electrodes on a flexible PET (polyethylene terephthalate) substrate is proposed for in-situ HeLa cell culturing and real-time detection of the released H2O2. The array was suitably interfaced with a poly- (methyl methacrylate) (PMMA) well-containing holders resulting in a low cost multichambered chip. PBEA fabrication was carried out employing a xurography-based cost-effective benchtop microfabrication technology using just a desktop cutting plotter and office grade thermal-laminator. The hydrophobicity of the PET isolating layer allows to constrain cell-containing drops directly on top of the electrochemical cells. HeLa cells growth in the very close vicinity of the working electrode ensures in-situ cell seeding, incubation, and further electrochemical detection of the H2O2 released, enabling high-throughput analysis. Selective and sensitive electrochemical sensing of hydrogen peroxide was carried out at -100 mV vs Ag|AgCl; the resulting LOD was 1.9 µM. Remarkably, the analytical exploitability of the approach was demonstrated by detection of the hydrogen peroxide released from HeLa cells stimulated with N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and after pretreatment of the cells with cocoa polyphenols, that induced a decreased oxidative stress levels. These data make our approach a promising tool for oxidative stress evaluation in cell cultures and biological systems.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Electrodes , Ferrocyanides , HeLa Cells , Humans , Oxidative Stress
8.
Anal Chem ; 92(19): 13565-13572, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32869640

ABSTRACT

A novel benchtop approach to fabricate xurography-enabled thermally transferred (XTT) carbon nanomaterial-based electrochemical sensors is proposed. Filtered nanomaterial (NM) films were transferred from Teflon filters to polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) substrates by a temperature-driven approach. Customized PET-EVA components were xurographically patterned by a cutting plotter. The smart design of PET-EVA films enabled us to selectively transfer the nanomaterial to the exposed EVA side of the substrate. Hence, the substrate played an active role in selectively controlling where nanomaterial transfer occurred allowing us to design different working electrode geometries. Counter and reference electrodes were integrated by a stencil-printing approach, and the whole device was assembled by thermal lamination. To prove the versatility of the technology, XTT materials were exclusively made of carbon black (XTT-CB), multiwalled carbon nanotubes (XTT-MWCNTs), and single-walled carbon nanotubes (XTT-SWCNTs). Their electrochemical behavior was carefully studied and was found to be highly dependent on the amount and type of NM employed. XTT-SWCNTs were demonstrated to be the best-performing sensors, and they were employed for the determination of l-tyrosine (l-Tyr) in human plasma from tyrosinemia-diagnosed patients. High analytical performance toward l-Tyr (linear range of 0.5-100 µM, LOD = 0.1 µM), interelectrode precision (RSD ip,a = 3%, n = 10; RSD calibration slope = 4%, n = 3), and accurate l-Tyr quantification in plasma samples with low relative errors (≤7%) compared to the clinical declared values were obtained. The proposed benchtop approach is cost-effective and straightforward, does not require sophisticated facilities, and can be potentially employed to develop pure or hybrid nanomaterial-based electrodes.


Subject(s)
Carbon/chemistry , Electrochemical Techniques , Nanostructures/chemistry , Polyethylene Terephthalates/analysis , Polyvinyls/analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...