Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(18): 186803, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767388

ABSTRACT

A challenge in plasmonic trapping of small nanoparticles is the heating due to the Joule effect of metallic components. This heating can be avoided with electromagnetic field confinement in high-refractive-index materials, but nanoparticle trapping is difficult because the electromagnetic fields are mostly confined inside the dielectric nanostructures. Herein, we present the design of an all-dielectric platform to capture small dielectric nanoparticles without heating the nanostructure. It consists of a Si nanodisk engineered to exhibit the second-order anapole mode at the infrared regime (λ=980 nm), where Si has negligible losses, with a slot at the center. A strong electromagnetic hot spot is created, thus allowing us to capture nanoparticles as small as 20 nm. The numerical calculations indicate that optical trapping in these all-dielectric nanostructures occurs without heating only in the infrared, since for visible wavelengths the heating levels are similar to those in plasmonic nanostructures.

2.
Phys Rev Lett ; 127(27): 279901, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061446

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.127.186803.

SELECTION OF CITATIONS
SEARCH DETAIL
...