Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(1): 1808-1816, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36534002

ABSTRACT

Herein we show that dispersing inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) in optical quality films, possessing an accessible and controlled pore size distribution, gives rise to fluorescent materials with a controlled and highly sensitive response to ambient changes. A scaffold-based synthesis approach is employed to obtain ligand-free QDs, whose pristine surface endows them with high sensitivity to the presence of different vapors in their vicinity. At the same time, the void network of the host offers a means to gradually expose the embedded QDs to such vapors. Under these conditions, the luminescent response of the QDs is mediated by the mesostructure of the matrix, which determines the rate at which vapor molecules will adsorb onto the pore walls and, eventually, condensate, filling the void space. With luminescence quantum yields as high as 60%, scaffold-supported ligand-free perovskite nanocrystals display intense photoemission signals over the whole process, as well as high photo- and chemical stability, which allows illuminating them for long periods of time and recovering the original response upon desorption of the condensed phase. The results herein presented open a new route to explore the application of perovskite QD-based materials in sensing.

2.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501632

ABSTRACT

Polymer nanocomposites (PNCs) attract the attention of researchers and industry because of their potential properties in widespread fields. Specifically, electrically conductive and semiconductor PNCs are gaining interest as promising materials for biomedical, optoelectronic and sensing applications, among others. Here, metallic nanoparticles (NPs) are extensively used as nanoadditives to increase the electrical conductivity of mere acrylic resin. As the in situ formation of metallic NPs within the acrylic matrix is hindered by the solubility of the NP precursors, we propose a method to increase the density of Ag NPs by using different intermediate solvents, allowing preparation of Ag/acrylic resin nanocomposites with improved electrical behaviour. We fabricated 3D structures using stereolithography (SLA) by dissolving different quantities of metal precursor (AgClO4) in methanol and in N,N-dimethylformamide (DMF) and adding these solutions to the acrylic resin. The high density of Ag NPs obtained notably increases the electrical conductivity of the nanocomposites, reaching the semiconductor regime. We analysed the effect of the auxiliary solvents during the printing process and the implications on the mechanical properties and the degree of cure of the fabricated nanocomposites. The good quality of the materials prepared by this method turn these nanocomposites into promising candidates for electronic applications.

3.
ACS Photonics ; 7(11): 3152-3160, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33241076

ABSTRACT

Manipulation of the exciton emission rate in nanocrystals of lead halide perovskites (LHPs) was demonstrated by means of coupling of excitons with a hyperbolic metamaterial (HMM) consisting of alternating thin metal (Ag) and dielectric (LiF) layers. Such a coupling is found to induce an increase of the exciton radiative recombination rate by more than a factor of three due to the Purcell effect when the distance between the quantum emitter and HMM is nominally as small as 10 nm, which coincides well with the results of our theoretical analysis. Besides, an effect of the coupling-induced long wavelength shift of the exciton emission spectrum is detected and modeled. These results can be of interest for quantum information applications of single emitters on the basis of perovskite nanocrystals with high photon emission rates.

4.
J Am Chem Soc ; 142(14): 6638-6648, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32172557

ABSTRACT

Reticular chemistry has boosted the design of thousands of metal and covalent organic frameworks for unlimited chemical compositions, structures, and sizable porosities. The ability to generate porous materials at will on the basis of geometrical design concepts is responsible for the rapid growth of the field and the increasing number of applications derived. Despite their promising features, the synthesis of targeted homo- and heterometallic titanium-organic frameworks amenable to these principles is relentlessly limited by the high reactivity of this metal in solution that impedes the controlled assembly of titanium molecular clusters. We describe an unprecedented methodology for the synthesis of heterometallic titanium frameworks by metal-exchange reactions of MOF crystals at temperatures below those conventionally used in solvothermal synthesis. The combination of hard (titanium) and soft (calcium) metals in the heterometallic nodes of MUV-10(Ca) enables controlled metal exchange in soft positions for the generation of heterometallic secondary building units (SBUs) with variable nuclearity, controlled by the metal incorporated. The structural information encoded in the newly formed SBUs drives an MOF-to-MOF conversion into bipartite nets compatible with the connectivity of the organic linker originally present in the crystal. Our simulations show that this transformation has a thermodynamic origin and is controlled by the terminations of the (111) surfaces of the crystal. The reaction of MUV-10(Ca) with first-row transition metals permits the production of crystals of MUV-101(Fe,Co,Ni,Zn) and MUV-102(Cu), heterometallic titanium MOFs isostructural with archetypical solids such as MIL-100 and HKUST. In comparison to de novo synthesis, this metal-induced topological transformation provides control over the formation of hierarchical micro-/mesopore structures at different reaction times and enables the formation of heterometallic titanium MOFs not accessible under solvothermal conditions at high temperature, thus opening the door for the isolation of additional titanium heterometallic phases not linked exclusively to trimesate linkers.

5.
ACS Appl Bio Mater ; 2(7): 3084-3094, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-35030800

ABSTRACT

In the past decade, profuse research efforts explored the uses of iron oxide particles in nanomedicine. To a great extent, the efficiency and fate of those magnetic nanoparticles depend on how their surfaces interface with the proteins in a physiological environment. It is well reported how an ungoverned protein corona can be detrimental to cellular uptake and targeting efficiency and how it can modify the nanoparticles biodistribution. Novel strategies are emerging to achieve enhanced and more reproducible performances of engineered nanoparticles with a custom-built protein corona. Here we report on a generalized protocol to preform a monolayer of human serum albumin (HSA) on superparamagnetic iron oxide nanoparticles (SPIONs) of different sizes. The resulting molecular structures are described by molecular dynamics simulations of the hybrid nanoconjugates. The simulations outcomes regarding the number of proteins in the corona and their monolayer arrangement on the particle surface are in agreement with the results obtained from dynamic light scattering and electronic microscopy analysis. Using tryptophan fluorescence quenching, we revealed the existence of a strong interaction between the SPIONs and the HSA which endorses the robustness of the protein-nanoparticle conjugates in this system. Moreover, we evaluated the effect of the HSA corona on the SPIONs efficiency as magnetic resonance imaging (MRI) contrast agents in water, human serum, and saline media. The protein corona did not affect the efficiency of the SPIONs as T2 contrast agents but reduce their T1 efficiency. In addition, we observed a greater stability for HSA-SPIONs nanoconjugates in saline and in acid media, preventing nanoparticle dissolution in extreme gastric conditions.

6.
Nat Nanotechnol ; 12(8): 790-796, 2017 08.
Article in English | MEDLINE | ID: mdl-28553962

ABSTRACT

Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu-Al-Ni shape-memory alloy from 2 µm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

7.
Nanoscale Res Lett ; 8(1): 513, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24308663

ABSTRACT

The finite elements method (FEM) is a useful tool for the analysis of the strain state of semiconductor heterostructures. It has been used for the prediction of the nucleation sites of stacked quantum dots (QDs), but often using either simulated data of the atom positions or two-dimensional experimental data, in such a way that it is difficult to assess the validity of the predictions. In this work, we assess the validity of the FEM method for the prediction of stacked QD nucleation sites using three-dimensional experimental data obtained by atom probe tomography (APT). This also allows us to compare the simulation results with the one obtained experimentally. Our analysis demonstrates that FEM and APT constitute a good combination to resolve strain-stress problems of epitaxial semiconductor structures.

8.
Nanoscale Res Lett ; 7(1): 681, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23249477

ABSTRACT

The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...