Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phycol ; 57(5): 1530-1541, 2021 10.
Article in English | MEDLINE | ID: mdl-33988856

ABSTRACT

Agriculture runoffs and discharge of wastewaters are the major causes of eutrophication. Although eutrophication could promote the thriving of any phytoplankter, harmful algal blooms (HABs) are dominated frequently by cyanobacteria. Currently, HABs dominated by the toxigenic cyanobacterium Microcystis aeruginosa in lakes and reservoirs are the main environmental concerns worldwide. This study aimed to determine how M. aeruginosa (Ma) modifies the population growth of Pseudokirchneriella subcapitata (Ps) and Ankistrodesmus falcatus (Af). Growth kinetics were determined for each species and in the combinations: Ps-Ma, Af-Ma, Af-Ps, and Ps-Af-Ma. At the end of experiments, photosynthetic pigments, phycobiliproteins, and microcystins were quantified. A logistic equation significantly described the growth trend for all of the tested species, enabling the identification of negative effects on early stages in the population growth of co-cultures with the cyanobacterium; in addition, the interaction effects on the growth rate and in the maximum attainable population density were determined. The biomasses of A. falcatus and P. subcapitata were significantly higher when cultured individually than in all of the combinations with the cyanobacterium. The concentrations of chlorophyll a and b, as well as carotenoids, were lower in combined cultures, but phycobiliprotein content in the cultures with M. aeruginosa was not significantly affected. Microcystis aeruginosa negatively affected the growth of the microalgae, but A. falcatus was significantly more inhibited than P. subcapitata; however, microcystin concentrations were significantly reduced in the co-cultures with microalgae. These results could help to explain the displacements of microalgae when cyanobacteria are present, giving rise to cyanobacterial blooms in eutrophic freshwaters.


Subject(s)
Cyanobacteria , Microalgae , Microcystis , Chlorophyll A , Population Growth
2.
Environ Sci Pollut Res Int ; 28(28): 38094-38105, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33725304

ABSTRACT

The use of herbicides has increased over the last decades. Glyphosate is the most widely used herbicide commercialized in more than 750 formulations. While information about glyphosate's toxicity on different non-target aquatic organisms has been vastly documented, we know little about the transgenerational effects in aquatic biota. This study determined the cross-generation effects produced by the glyphosate-based herbicide Faena® on the American cladoceran Daphnia exilis. Measured endpoints were survival, reproductive responses, metabolic biomarkers, and the size of neonates. D. exilis was exposed to glyphosate concentrations of 2.09, 2.49, and 3.15 (mg L-1) (as content in Faena®) during 21 days starting from neonates, at 25°C, 16:8 photoperiod, fed with 8 × 105 cells mL-1 of Pseudokirchneriella subcapitata. The LC50 was 4.22 mg L-1. Survival, accumulated progeny, and the number of clutches in the parental generation (P1) were significantly higher than those observed in the first generation (F1). Exposure to the herbicide completely inhibited reproduction in the F1. The size of the neonates varied among treatments and broods in P1; nevertheless, neonate size (body and total lengths, as well as body width) was significantly affected in F1. Toxic effects on the survival and reproduction of D. exilis were significantly increased in the F1 exposed to Faena®. Results warn about the augmented effect on progeny where parents were exposed to this herbicide. Multigenerational adverse effects could be expected in freshwater zooplankton exposed to Faena®. The frequently claimed low toxicity of glyphosate must be revised to control the indiscriminate use of this herbicide.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Daphnia , Glycine/analogs & derivatives , Herbicides/toxicity , Humans , Infant, Newborn , Plant Preparations , United States , Water Pollutants, Chemical/toxicity , Glyphosate
3.
Ecotoxicology ; 28(8): 890-902, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392637

ABSTRACT

Aquatic pollution caused by dyes has increased together with the growth of activities using colorants such as the textile, leather, food, and agrochemicals industries. Because most popular azo dyes are synthesized from benzidine, a carcinogenic compound, a threat to aquatic biota could be expected. The use of single species for toxicity assessment provides limited data, so a battery of test organisms, including representatives of different trophic levels such as algae, zooplankters, and fish, could undoubtedly provide more information. Therefore, our study was aimed at evaluating the toxic effect of the azo dye Direct blue 15 (DB15) on a battery of bioassays using a primary producer (Pseudokirchneriella subcapitata), a primary consumer (Ceriodaphnia dubia), and a secondary consumer (Danio rerio). P. subcapitata was more sensitive to DB15 (IC50 = 15.99 mg L-1) than C. dubia (LC50: 450 mg L-1). In the algae exposed to DB15, chlorophyll-a and -b were significantly increased, and carotenoids were reduced. The concentrations of protein, carbohydrates, and lipids per cell in P. subcapitata exposed to all DB15 concentrations were significantly higher than that measured in control. At 25 mg L-1 of DB15, survival, total progeny, and the number of released clutches were significantly decreased, and the start of reproduction was delayed in C. dubia. DB15 did not induce lethal or sublethal effects in D. rerio embryos at any of the tested concentrations from 24 to 72 h post-fertilization (hpf), but from 96 to 144 hpf, the larvae exposed to 100 and 500 mg L-1 developed yolk sac edema, curved tail, and skeletal deformations. After 144 hpf, DB15 produced a significant increase in embryos without a heartbeat, as the concentration of dye raised. The textile-used, azo dye DB15, caused toxic effects of different magnitude on microalgae, cladocerans, and zebrafish embryos; for this reason, the discharge of this colorant into waterbodies should be regulated to prevent environmental impacts.


Subject(s)
Azo Compounds/toxicity , Chlorophyceae/drug effects , Cladocera/drug effects , Coloring Agents/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Embryo, Nonmammalian/drug effects , Microalgae/drug effects
4.
Environ Sci Pollut Res Int ; 26(12): 11743-11755, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30815811

ABSTRACT

Global consumption of synthetic dyes is roughly 7 × 105 tons per year, of which the textile industry expends about two-thirds. Consumption of synthetic dyes produces large volumes of wastewater discharged into aquatic ecosystems. Colored effluents produce toxic effects in the hydrobionts, reduce light penetration, and alter the photosynthetic activity, causing oxygen depletion, among other effects. Some dyes, such as Congo red (CR), are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is scarce; therefore, our study was aimed at evaluating the toxicity of CR on a battery of bioassays: the microalga Pseudokirchneriella subcapitata, the cladocerans Daphnia magna and Ceriodaphnia rigaudi, and the zebrafish Danio rerio. P. subcapitata was the most sensitive species to CR (IC50, 3.11 mg L-1); in exposed individuals, population growth was inhibited, but photosynthetic pigments and macromolecule concentrations were stimulated. D. magna was tolerant to high dye concentrations, the determined LC50 (322.9 mg L-1) is not an environmentally relevant value, but for C. rigaudi, LC50 was significantly lower (62.92 mg L-1). In zebrafish embryos, exposure to CR produced yolk sac edema, skeletal deformities, and stopped larvae hatching; lack of heart beating was the only observed lethal effect. CR affected organisms of different trophic levels diversely. Particularly, the effects observed in microalgae confirm the vulnerability of primary producers to dye-polluted wastewaters, because dyes produced toxic effects and interfered with photosynthesis. Different cladoceran species displayed different acute effects; thus, species sensitivity must also be considered when toxicity of dyes is assessed. Inhibition of fish larvae hatching is a significant effect not previously reported that warns about the toxicity of dyes in fish population dynamics. Synthetic azo colorants should be considered as emerging pollutants because they are discharged into the aquatic environment and are not currently included in the environmental regulation of several countries.


Subject(s)
Congo Red/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Cladocera/drug effects , Coloring Agents/toxicity , Daphnia/drug effects , Embryo, Nonmammalian , Food Chain , Larva/drug effects , Lethal Dose 50 , Microalgae , Textile Industry , Wastewater , Zebrafish/embryology
5.
Ecotoxicology ; 25(10): 1832-1840, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27670667

ABSTRACT

Nearly 7 00000 tons of dyes are produced annually throughout the world. Azo dyes are widely used in the textile and paper industries due to their low cost and ease of application. Their extensive use results in large volumes of wastewater being discharged into aquatic ecosystems. Large volume discharges constitute a health risk since many of these dyes, such as Congo Red, are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is limited. Therefore, the aim of the present study was to evaluate the effect of Congo Red on survival and reproduction of Ceriodaphnia dubia. We determined the 48 h median lethal concentration (LC50) and evaluated the effects of sublethal concentrations in subchronic exposures by using as food either fresh algae or algae previously exposed to the dye. LC50 was 13.58 mg L-1. In subchronic assays, survival was reduced to 80 and 55 %, and fertility to 40 and 70 %, as compared to the control, in C. dubia fed with intoxicated cells or with the mix of intoxicated + fresh algae, respectively, so the quantity and type of food had a significant effect. We determined that Congo Red is highly toxic to C. dubia since it inhibits survival and fertility in concentrations exceeding 3 mg L-1. Our results show that this dye produces negative effects at very low concentrations. Furthermore, our findings warn of the risk associated with discharging dyes into aquatic environments. Lastly, the results emphasize the need to regulate the discharge of effluents containing azo dyes.


Subject(s)
Cladocera/physiology , Congo Red/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Cladocera/drug effects , Lethal Dose 50 , Reproduction , Wastewater
6.
Environ Sci Pollut Res Int ; 22(14): 10811-23, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25772869

ABSTRACT

Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.


Subject(s)
Chlorella vulgaris/metabolism , Coloring Agents/metabolism , Congo Red/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Animals , Azo Compounds/metabolism , Azo Compounds/toxicity , Biodegradation, Environmental , Cladocera/drug effects , Coloring Agents/toxicity , Congo Red/toxicity , Daphnia/drug effects , Inhibitory Concentration 50 , Textile Industry , Toxicity Tests, Acute , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Water Purification
7.
Ecotoxicol Environ Saf ; 108: 72-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042247

ABSTRACT

Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments.


Subject(s)
Chlorella vulgaris/drug effects , Congo Red/toxicity , Microalgae/drug effects , Photosynthesis/drug effects , Cell Respiration/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll/analysis , Chlorophyll A , Electron Transport/drug effects , Photosystem II Protein Complex/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...