Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Technol Int ; : 10820132231162167, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36911978

ABSTRACT

Given that mung beans constitute a significant nutrient source in many cultures, it is worthwhile to investigate ways to improve their nutritional and functional properties. The effect of fermentation of mung beans by Bacillus subtilis subsp. natto was investigated in various reactor designs, including static, shaking flasks, and soft elastic tubular reactors (SETR). The results showed that all three processes might affect the substrate, resulting in changes in the protein and carbohydrate fractions. We noticed an increase in soluble protein and serine levels, which we attribute to the proteases produced during fermentation. Through XRD, FTIR, and DSC analyses, it was also discovered that whereas static and shaking flask fermentation might raise relative crystallinity and peak temperature, fermentation performed on the SETR decreased these values. It was also possible to notice that SETR might induce a change in the particle size distribution of the substrate through a complex impact of mechanical forces, mixing, and microbial activity, which could be helpful to some aspects of the process. To summarize, fermentation of mung beans by Bacillus. subtilis subsp. natto could be an attractive approach for producing a food ingredient with various functional and nutritional properties. Furthermore, the SETR has been shown to be a viable technique for dealing with high solid load substrates, whether as the reactor for the entire process or as a first stage/pre-treatment step, and its applicability in bioprocesses should be explored further.

2.
Food Res Int ; 150(Pt A): 110743, 2021 12.
Article in English | MEDLINE | ID: mdl-34865762

ABSTRACT

The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.


Subject(s)
Digestion , Food , Allergens , Colon , Gastrointestinal Tract
3.
Bioresour Technol ; 157: 214-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24556374

ABSTRACT

The aim of this study was to produce microbial oil from Lipomyces starkeyi DSM 70296 grown in hemicellulose hydrolysate (H-H). Glucose and xylose were used for batch, fed-batch, repeated fed-batch, and continuous cultures, and H-H was tested at continuous culture. The highest cell and lipid concentrations of 85.4 and 41.8g/L, respectively, were obtained using repeated fed-batch strategy. Continuous culture with dilution rate of 0.03h(-1) presented the highest overall cell (0.443g/g) and lipid yields (0.236g/g). At 0.06h(-1) were obtained the highest cell and lipid productivities. Continuous cultivation using H-H at 0.03h(-1) resulted in higher cell productivity than that obtained using glucose:xylose. Gas chromatography analysis of the esterified lipids indicated that the major constituents of this complex are palmitic acid, stearic acid, oleic acid, and linoleic acid with an estimated cetane number (approximately 61) similar to that of palm biodiesel, which is important for biofuel production.


Subject(s)
Bioreactors/microbiology , Fatty Acids/metabolism , Lipids/biosynthesis , Lipomyces/metabolism , Batch Cell Culture Techniques , Biomass , Cell Proliferation/drug effects , Fermentation/drug effects , Glucose/pharmacology , Lipomyces/drug effects , Lipomyces/growth & development , Xylose/pharmacology
4.
Appl Microbiol Biotechnol ; 79(4): 589-96, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18481059

ABSTRACT

The present work was devoted to investigations concerning the purification and characterisation of the fructooligosaccharide (FOS)-producing extracellular enzyme of Rhodotorula sp. LEB-V10. FOS are functional food ingredients showing prebiotic properties, meaning that it could stimulate selectively the growth and/or activity of probiotic bacteria in the gut. The purification of the enzyme was carried out according to the following sequential procedure: cell separation by centrifugation, recovering by ethanol precipitation and purification by anion exchange chromatography. The molecular weight was estimated to be 170 kDa by preparative gel filtration and 77 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, signifying that the native enzyme exists as a dimer. With sucrose as substrate, the data failed to fit the Michaelis-Menten behaviour, rather showing a sigmoid shape similar to that of the allosteric enzymes (cooperative behaviour), requiring high sucrose concentrations to obtain high reaction rates. The enzyme showed both fructofuranosidase (FA) and fructosyl-transferase (FTA) activities. The optimum pH and temperature for FA activity were found to be around 4.0 and 72-75 degrees C, respectively, while FTA showed optimum activity at pH 4.5 and 65-70 degrees C. Both activities were very stable at temperatures below 66 degrees C, while for FA, the enzyme was more stable at pH 4.0 and for FTA at pH 5.0.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Hexosyltransferases/chemistry , Hexosyltransferases/isolation & purification , Rhodotorula/enzymology , Chromatography, Ion Exchange , Enzyme Stability , Fungal Proteins/metabolism , Hexosyltransferases/metabolism , Kinetics , Molecular Weight , Oligosaccharides/metabolism , Rhodotorula/chemistry , Substrate Specificity , Temperature , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/isolation & purification , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...