Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(10): 230409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37830015

ABSTRACT

Azithromycin (AZM) is a macrolide-type antibiotic used to prevent and treat serious infections (mycobacteria or MAC) that significantly inhibit bacterial growth. Knowledge of the predominant conformation in solution is of fundamental importance for advancing our understanding of the intermolecular interactions of AZM with biological targets. We report an extensive density functional theory (DFT) study of plausible AZM structures in solution considering implicit and explicit solvent effects. The best match between the experimental and theoretical nuclear magnetic resonance (NMR) profiles was used to assign the preferred conformer in solution, which was supported by the thermodynamic analysis. Among the 15 distinct AZM structures, conformer M14, having a short intramolecular C6-OH … N H-bond, is predicted to be dominant in water and dimethyl sulfoxide (DMSO) solutions. The results indicated that the X-ray structure backbone is mostly conserved in solution, showing that large flexible molecules with several possible conformations may assume a preferential spatial orientation in solution, which is the molecular structure that ultimately interacts with biological targets.

2.
ACS Omega ; 8(40): 37521-37539, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841183

ABSTRACT

Thalidomide (TLD) was used worldwide as a sedative, but it was revealed to cause teratogenicity when taken during early pregnancy. It has been stated that the (R) enantiomer of TLD has therapeutic effects, while the (S) form is teratogenic. Clinical studies, however, demonstrated the therapeutic efficacy of thalidomide in several intractable diseases, so TLD and its derivatives have played an important role in the development and therapy of anticancer drugs. Therefore, it is important to know the molecular mechanism of action of the TLD, although this is still not clear. In what molecular interactions are concerned, it is known that drug molecules can interact with DNA in different ways, for example, by intercalation between base pairs. Furthermore, the ability of the TLD to interact with DNA has been confirmed experimentally. In this work, we report a theoretical investigation of the interaction of the R and S enantiomers of TLD, in its monomeric, dimeric, trimeric, and tetrameric forms, with guanine (GUA) DNA nucleotide basis in solution using density functional theory (DFT). Our initial objective was to evaluate the interaction of TLD-R/S with GUA through thermodynamic and spectroscopic study in dimethyl sulfoxide (DMSO) solvent and an aqueous solution. Comparison of the experimental 1H nuclear magnetic resonance (NMR) spectrum in DMSO-d6 solution with calculated DFT-PCM-DMSO chemical shifts revealed that TLD can undergo molecular association in solution, and interaction of its dimeric form with a DNA base ((TLD)2-GUA and (TLD)2-2GUA, for example) through H-bond formation is likely to take place. Our results strongly indicated that we must consider the plausibility of the existence of TLD associations in solution when modeling the complexation of the TLD with biological targets. This is new information that may provide further insight into our understanding of drug binding to biological targets at the molecular level.

3.
Phys Chem Chem Phys ; 24(37): 22845-22858, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36112360

ABSTRACT

Azithromycin (AZM) is a well-known macrolide-type antibiotic that has been used in the treatment of infections and inflammations. Knowledge of the predominant molecular structure in solution is a prerequisite for an understanding of the interactions of the drug in biological media. Experimental structural determination can be carried out for samples in solid-state (X-ray diffraction technique) and gas phase (electron diffraction experiment). In solution, spectroscopic methods can be used to extract valuable information which combined with quantum chemical calculations can lead to the determination of the preferred molecular structures to be observed when a given solute is dissolved in each solvent. That is precisely the aim of this work. We used experimental NMR chemical shift data (in CDCl3) as a reference for comparison with Density Functional Theory (DFT) NMR calculations, with geometry optimized having as guess input two crystallographic structures available in the literature with the configuration of all chiral carbon atoms inverted, named here A and B. The Polarizable Continuum Model (PCM) was used to describe the solvent effects (chloroform) including five explicit CHCl3 solvent molecules, which we believe can account for short and long-range solute-solvent interactions. Analysis of calculated thermodynamic, NMR chemical shift, MAE (Mean Absolute Error), and spin-spin coupling constant values revealed that both supposable C3R-C5S (named M2-A) and C3S-C5R (named M2-B) structures are equally probable to exist in chloroform solution. In addition, we found that the heavy atoms' conformation is reasonably similar in the solid-state and chloroform solution; however, regarding the OH groups, the spatial orientations are rather different with intramolecular OH⋯N and OH⋯O hydrogen bonds present in solution and with some of them being absent in the X-ray structure probably due to crystal packing effects.


Subject(s)
Azithromycin , Chloroform , Anti-Bacterial Agents , Carbon , Quantum Theory , Solutions , Solvents/chemistry , Thermodynamics
4.
J Phys Chem B ; 125(13): 3321-3342, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33760611

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been standard antimalarial drugs since the early 1950s, and very recently, the possibility of their use for the treatment of COVID-19 patients has been considered. To understand the drug mode of action at the submicroscopic level (atoms and molecules), molecular modeling studies with the aid of computational chemistry methods have been of great help. A fundamental step in such theoretical investigations is the knowledge of the predominant drug molecular structure in solution, which is the real environment for the interaction with biological targets. Our strategy to access this valuable information is to perform density functional theory (DFT) calculations of 1H NMR chemical shifts for several plausible molecular conformers and then find the best match with experimental NMR profile in solution (since it is extremely sensitive to conformational changes). Through this procedure, after optimizing 30 trial distinct molecular structures (ωB97x-D/6-31G(d,p)-PCM level of calculation), which may be considered representative conformations, we concluded that the global minimum (named M24), stabilized by an intramolecular N-H hydrogen bond, is not likely to be observed in water, chloroform, and dimethyl sulfoxide (DMSO) solution. Among fully optimized conformations (named M1 to M30, and MD1 and MD2), we found M12 (having no intramolecular H-bond) as the most probable structure of CQ and HCQ in water solution, which is a good approximate starting geometry in drug-receptor interaction simulations. On the other hand, the preferred CQ and HCQ structure in chloroform (and CQ in DMSO-d6) solution was assigned as M8, showing the solvent effects on conformational preferences. We believe that the analysis of 1H NMR data in solution can establish the connection between the macro level (experimental) and the sub-micro level (theoretical), which is not so apparent to us and appears to be more appropriate than the thermodynamic stability criterion in conformational analysis studies.


Subject(s)
Chloroquine/chemistry , Hydroxychloroquine/chemistry , Molecular Structure , Proton Magnetic Resonance Spectroscopy
5.
J Phys Chem A ; 124(25): 5182-5193, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32466649

ABSTRACT

Among 20 compounds isolated from the extracts of Ouratea ferruginea the 5,4'-dihydroxy-7,5',3'-trimethoxyisoflavone (9) showed the best inhibitory effect on glutathione S-transferase (GST) and so deserves our attention. In this work we investigated the preferred molecular structure of 9 in chloroform solution using the density functional theory (DFT) and molecular dynamics simulation. Comparison between experimental 1H NMR data in CDCl3 solution and calculated chemical shifts enabled us to precisely determine the conformation adopted by 9 in solution, which can be used in further theoretical studies involving interaction with biological targets. Moreover, the experimental NMR data were used as reference to assess the ability of DFT based methods to predict 1H NMR spectrum in solution for organic compounds. Among various DFT functionals the hybrid B3LYP was the most adequate for the calculation of chemical shifts in what CHn protons are concerned. Regarding the OH hydrogen, inclusion of explicit CHCl3 solvent molecules adequately placed around the solute led to good agreement with the experimental chemical shifts (in CDCl3). It is a well-known fact that theoretical prediction of chemical shifts for OH hydrogens poses as a challenge and also revealed that the way the solvent effects are included in the DFT calculations is crucial for the right prediction of the whole 1H NMR spectrum. It was found in this work that a supermolecule solute-solvent calculation with a minimum of four CHCl3 molecules is enough to correctly reproduce the 1H NMR experimental profile observed in solution, revealing that the calculated solvated structure used to reproduce the NMR chemical shifts is not unique.

SELECTION OF CITATIONS
SEARCH DETAIL
...