Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12239, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806565

ABSTRACT

Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.

2.
Sci Adv ; 8(35): eabo0617, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36054354

ABSTRACT

Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.

3.
Nat Commun ; 13(1): 3303, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729158

ABSTRACT

Electrolytes play an important role in the internal structure and dynamics of water-rich satellites and potentially water-rich exoplanets. However, in planets, the presence of a large high-pressure ice mantle is thought to hinder the exchange and transport of electrolytes between various liquid and solid deep layers. Here we show, using first-principles simulations, that up to 2.5 wt% NaCl can be dissolved in dense water ice at interior conditions of water-rich super-Earths and mini-Neptunes. The salt impurities enhance the diffusion of H atoms, extending the stability field of recently discovered superionic ice, and push towards higher pressures the transition to the stiffer ice X phase. Scaling laws for thermo-compositional convection show that salts entering the high pressure ice layer can be readily transported across. These findings suggest that the high-pressure ice mantle of water-rich exoplanets is permeable to the convective transport of electrolytes between the inner rocky core and the outer liquid layer.

4.
Philos Trans A Math Phys Eng Sci ; 379(2211): 20200430, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34628944

ABSTRACT

The energy landscape of the fast-ion conductor Bi4V2O11 is studied using density functional theory. There are a large number of energy minima, dominated by low-lying thermally accessible configurations in which there are equal numbers of oxygen vacancies in each vanadium-oxygen layer, a range of vanadium coordinations and a large variation in Bi-O and V-O distances. By dividing local minima in the energy landscape into sets of configurations, we then examine diffusion in each different layer using ab initio molecular dynamics. These simulations show that the diffusion mechanism mainly takes place in the 〈110〉 directions in the vanadium layers, involving the cooperative motion of the oxide ions between the O(2) and O(3) sites in these layers, but not O(1) in the Bi-O layers, in agreement with experiment. O(1) vacancies in the Bi-O layers are readily filled by the migration of oxygens from the V-O layers. The calculated ionic conductivity is in reasonable agreement with the experiment. We compare ion conduction in δ-Bi4V2O11 with that in δ-Bi2O3. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.

5.
J Vis Exp ; (175)2021 09 17.
Article in English | MEDLINE | ID: mdl-34605802

ABSTRACT

We have developed a Python-based open-source package to analyze the results stemming from ab initio molecular-dynamics simulations of fluids. The package is best suited for applications on natural systems, like silicate and oxide melts, water-based fluids, and various supercritical fluids. The package is a collection of Python scripts that include two major libraries dealing with file formats and with crystallography. All the scripts are run at the command line. We propose a simplified format to store the atomic trajectories and relevant thermodynamic information of the simulations, which is saved in UMD files, standing for Universal Molecular Dynamics. The UMD package allows the computation of a series of structural, transport and thermodynamic properties. Starting with the pair-distribution function it defines bond lengths, builds an interatomic connectivity matrix, and eventually determines the chemical speciation. Determining the lifetime of the chemical species allows running a full statistical analysis. Then dedicated scripts compute the mean-square displacements for the atoms as well as for the chemical species. The implemented self-correlation analysis of the atomic velocities yields the diffusion coefficients and the vibrational spectrum. The same analysis applied on the stresses yields the viscosity. The package is available via the GitHub website and via its own dedicated page of the ERC IMPACT project as open-access package.


Subject(s)
Molecular Dynamics Simulation , Software
6.
Metallomics ; 13(6)2021 06 08.
Article in English | MEDLINE | ID: mdl-33881548

ABSTRACT

Lactation and gestation are among the physiological events that trigger the most intense changes in body calcium (Ca) fluxes. Along with the composition of the animal 2021 diet, these events are suspected to impact the Ca isotopic composition of Ca body reservoirs but their dynamics are poorly understood. In this study, we monitored a group of domestic sows across a full reproduction cycle. We collected tissues and fluids (blood, urine, milk, colostrum, umbilical blood, adult and piglet bones) at different steps of gestation and lactation, and analyzed their Ca isotopic compositions (i.e. δ44/42Ca) by means of multi-collector inductively coupled plasma mass spectrometry. Among other results, we report the first observations of Ca isotopic fractionation between maternal and umbilical blood (Δ44/42Caumbilical blood-sow blood = -0.18 ± 0.11‰, n = 3). Our data also highlight that gestation and lactation periods are characterized by small diet-bone Ca isotopic offsets (Δ44/42Cabone-diet = -0.28 ± 0.11‰, n = 3), with 44Ca-enriched blood compositions during nursing (Δ44/42Canursing blood-gestation blood = $+ 0.42{\rm{\,\,}}_{ - 0.12}^{ + 0.11}$‰, n = 3). Under the light of an up-to-date mammalian box model, we explored different scenarios of gestation and lactation Ca fluxes experienced by a sow-like animal. These simulations suggest that gestation changes on body δ44/42Ca values may result from the intensification of Ca absorption by the animal, whereas the production of 44Ca-depleted milk is the main driver for the 44Ca enrichment in blood during lactation. In addition, our results also support that bone mineralization could be associated with a more restricted Ca isotopic fractionation than previously envisioned. Together, these results refine the framework of Ca isotope applications, notably regarding the monitoring of human bone balance and the study of species and ecosystems from the present and the past.


Subject(s)
Animal Feed/analysis , Body Fluids/metabolism , Bone and Bones/chemistry , Calcium Isotopes/analysis , Calcium/metabolism , Lactation , Models, Biological , Animals , Animals, Newborn , Body Fluids/chemistry , Female , Pregnancy , Swine
7.
Proc Natl Acad Sci U S A ; 117(22): 11981-11986, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32414927

ABSTRACT

Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.

8.
Phys Rev Lett ; 117(13): 135503, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715129

ABSTRACT

From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O─H⋯O bond (ice VII^{'} to ice X transition) in body-centered-cubic (bcc) H_{2}O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII^{''} hereinafter) is stable at low pressures. A first-order transition separates this phase from a superionic VII^{'}, characterized by a finite degree of localization of protons along the nonsymmetric O─H⋯O bonds. The transition is identified in structural, energetic, and elastic analysis. Upon further compression a second-order phase transition leads to the superionic ice X with symmetric O─H─O bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...