Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(24): 27416-27424, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32484686

ABSTRACT

The adoption of solution-processed active layers in the production of thin-film photovoltaics is hampered by the transition from research fabrication techniques to scalable processing. We report a detailed study of the role of processing in determining the morphology and performance of organic photovoltaic devices using a commercially available, low-solubility, high-molar mass diketopyrrolopyrrole-based polymer donor. Ambient blade coating of thick layers in an inverted architecture was performed to best model scalable processing. Device performance was strongly dependent on the introduction of either o-dichlorobenzene (DCB), 1,8-diiodooctane, or diphenyl ether cosolvent into the chloroform (CHCl3) solution, which were all shown to drastically improve the morphology. To understand the origin of these morphological changes as a result of the addition of the cosolvent, in situ studies with grazing-incidence X-ray scattering and optical reflection interferometry were performed. Use of any of the cosolvents decreases the domain size relative to the single solvent system and moved the drying mechanism away from what is likely liquid-liquid phase separation to solid-liquid phase separation driven by polymer aggregation. Comparing the CHCl3 + DCB cast films to the CHCl3-only cast films, we observed both the formation of small domains and an increase in crystallinity during the evaporation of DCB due to a high nucleation rate from supersaturation. This resulted in percolated bulk heterojunction networks that performed similarly well with a wide range of film thicknesses from 180 to 440 nm, making this system amenable to continuous roll-to-roll processing methods.

2.
ACS Cent Sci ; 3(9): 961-967, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28979937

ABSTRACT

The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.

3.
ACS Appl Mater Interfaces ; 9(15): 13357-13368, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28379681

ABSTRACT

The performance of devices relying on organic electronic materials, such as organic field-effect transistors (OFET) and organic photovoltaics (OPV), is strongly correlated to the morphology of the conjugated material in thin films. For instance, several factors such as polymer solubility, weak intermolecular forces between polymers and fullerene derivatives, and film drying time impact phase separation in the active layer of a bulk heterojunction OPV device. In an effort to probe the influence of polymer assembly on morphology of polymer thin films and phase separation with fullerene derivatives, five terthiophene-alt-isoindigo copolymers were synthesized with alkyl side-chains of varying lengths and branching on the terthiophene unit. These P[T3(R)-iI] polymers were designed to have similar optoelectronic properties but different solubilities in o-dichlorobenzene and were predicted to have different tendencies for crystallization. All polymers with linear alkyl chains exhibit similar thin film morphologies as investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM). The main differences in electronic and morphological properties arise when P[T3(R)-iI] is substituted with branched 2-ethylhexyl (2EH) side-chains. The bulky 2EH substituents lead to a blue-shifted absorption, a lower ionization potential, and reduced ordering in polymer thin films. The five P[T3-iI] derivatives span hole mobilities from 1.5 × 10-3 to 2.8 × 10-2 cm2 V-1 s-1 in OFET devices. In OPV devices, the 2EH-substituted polymers yield open-circuit voltages of 0.88 V in BHJ devices yet low short-circuit currents of 0.8 mA cm-2, which is explained by the large phase separation observed by AFM in blends of P[T3(2EH)-iI] with PC71BM. In these P[T3(R)-iI] systems, the propensity for the polymers to self-assemble prior to aggregation of PC71BM molecules was key to achieving fine phase separation and increased short-circuit currents, eventually resulting in power conversion efficiencies of 5% in devices processed using a single solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...