Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10863, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740831

ABSTRACT

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Subject(s)
Cricetulus , Kinins , Neuropeptides , Peristalsis , Animals , Kinins/metabolism , CHO Cells , Neuropeptides/metabolism , Neuropeptides/genetics , Muscles/metabolism , Muscles/physiology , Ticks/metabolism , Ticks/physiology , Rhipicephalus/metabolism , Rhipicephalus/physiology , Rhipicephalus/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
2.
PLoS Negl Trop Dis ; 17(1): e0011033, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36689414

ABSTRACT

Harris County, TX, is the third most populous county in the USA and upon detection of arboviruses Harris County Public Health applies insecticides (e.g., pyrethroid-based Permanone 31-66) against adults of Culex quinquefasciatus to prevent disease transmission. Populations of Aedes aegypti, while not yet a target of public health control, are likely affected by pyrethroid exposure. As this species is a vector of emerging arboviruses, its resistance status to Permanone and the kdr mutations in the voltage-gated sodium channel (VGSC) associated with pyrethroid resistance were investigated. We examined females of known genotype at the V1016I and F1534C sites (N = 716) for their genotype at the 410 amino acid position in the VGSC, and for the influence of their kdr genotype on survival to Permanone at three different distances from the insecticide source in field tests. Most females (81.8%) had at least one resistant L allele at the 410 position, being the first report of the V410L mutation in Ae. aegypti for Texas. When only genotypes at the 410 position were analyzed, the LL genotype exhibited higher survivorship than VL or VV. Out of 27 possible tri-locus kdr genotypes only 23 were found. Analyses of the probability of survival of tri-locus genotypes and for the V410L genotype using a multivariate logistic regression model including area, distance, and genotype found significant interactions between distance and genotype. When only the most common tri-locus genotypes were analyzed (LL/II/CC, 48.2%; VL/II/CC, 19.1%; and VV/II/CC, 10.1%) genotype had no effect on survival, but significant interactions of distance and genotype were found. This indicated that the V410L kdr allele increased survival probability at certain distances. Genotypes did not differ in survivorship at 7.62-m, but LL/II/CC had higher survivorship than VL/II/CC at 15.24- and 22.86-m. The model also identified differences in survivorship among the operational areas investigated.


Subject(s)
Aedes , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Female , Aedes/genetics , Texas , Insecticides/pharmacology , Permethrin/metabolism , Mutation , Genotype , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics , Mosquito Vectors/genetics
3.
PLoS Negl Trop Dis ; 15(11): e0009833, 2021 11.
Article in English | MEDLINE | ID: mdl-34735439

ABSTRACT

Aedes aegypti (L.) is an important mosquito vector of emerging arboviruses such as Zika, dengue, yellow fever, and chikungunya. To quell potential disease outbreaks, its populations are controlled by applying pyrethroid insecticides, which selection pressure may lead to the development of insecticide resistance. Target site insensitivity to pyrethroids caused by non-synonymous knockdown resistance (kdr) mutations in the voltage-gated sodium (NaV) channel is a predominant mechanism of resistance in mosquitoes. To evaluate the potential impact of pyrethroid resistance on vector control, Ae. aegypti eggs were collected from eight mosquito control operational areas in Harris County, Texas, and emerged females were treated in field tests at four different distances from the pyrethroid Permanone 31-66 source. The females were genotyped by melting curve analyses to detect two kdr mutations (V1016I and F1534C) in the NaV channel. Harris County females had higher survivorship rates at each distance than the pyrethroid-susceptible Orlando strain females. Survivorship increased with distance from the pyrethroid source, with 39% of field-collected mosquitoes surviving at 7.62 m and 82.3% at 22.86 m from the treatment source. Both the V1016I and F1534C pyrethroid resistant genotypes were widely distributed and at high frequency, with 77% of the females being double homozygous resistant (II/CC), this being the first report of kdr mutations in Ae. aegypti in Harris County. Analysis of the probability of survival for each mutation site independently indicated that the CC genotype had similar probability of survival as the FC heterozygous, while the II genotype had higher survival than both the VI and VV, that did not differ. The double homozygous resistant genotype (II/CC) had the highest probability of survival. A linear model estimated probability of survival for areas and genotypes. The high frequency and widespread distribution of double-homozygote pyrethroid-resistant Ae. aegypti may jeopardize disease vector control efforts in Harris County.


Subject(s)
Aedes/drug effects , Aedes/genetics , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Voltage-Gated Sodium Channels/genetics , Aedes/physiology , Animal Distribution , Animals , Female , Genotype , Insect Proteins/metabolism , Male , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Mutation , Permethrin/pharmacology , Texas , Voltage-Gated Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...