Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Neural Plast ; 2023: 4637073, 2023.
Article in English | MEDLINE | ID: mdl-36644710

ABSTRACT

CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.


Subject(s)
Central Nervous System , Chemokine CX3CL1 , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/metabolism , Microglia/metabolism , Spinal Cord/metabolism
2.
Chem Senses ; 31(4): 351-7, 2006 May.
Article in English | MEDLINE | ID: mdl-16495435

ABSTRACT

Molecular and behavioral studies have identified heterodimers of the T1R family as receptors for detecting the tastes of sweet (T1R2 + T1R3) and umami (T1R1 + T1R3). However, behavioral studies have reported conflicting findings with T1R3 knockout (KO) mice. One study showed a complete or nearly complete loss of preference for sweet and umami substances by KO mice, whereas KO mice in another study showed only a partial reduction in preferences for sucrose and monosodium glutamate (MSG), the prototypical umami substance. The present experiments used psychophysical methods to assess how sensitive T1R1-KO mice are to sucrose and MSG and discrimination methods to determine if these mice could distinguish between the tastes of sucrose and MSG. Detection thresholds of T1R3-KO mice and wild-type (WT) C57Bl mice were nearly identical for sucrose and MSG. Mice of both genotypes were easily able to discriminate between the tastes of sucrose and MSG. When amiloride (a sodium channel blocker) was added to all solutions to reduce the taste of Na+, discrimination accuracy of both genotypes of mice decreased but more so for the T1R3-KO mice than the WT mice. However, even when the sodium taste of MSG was neutralized, both genotypes could still discriminate between the two substances well above chance performance. These results suggest that sucrose and MSG can be detected by taste receptors other than T1R2 + T1R3 and T1R1 + T1R3 and that the conflicts between the previous studies may have been due to the methodological limitations.


Subject(s)
Discrimination, Psychological/drug effects , Sodium Glutamate/pharmacology , Sucrose/pharmacology , Taste Threshold/drug effects , Amiloride/pharmacology , Animals , Choice Behavior/drug effects , Choice Behavior/physiology , Discrimination, Psychological/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Sensitivity and Specificity , Taste Threshold/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...