Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 38(1): 21-32, 2019 01.
Article in English | MEDLINE | ID: mdl-29994394

ABSTRACT

The use of whole-slide images (WSIs) in pathology entails stringent storage and transmission requirements because of their huge dimensions. Therefore, image compression is an essential tool to enable efficient access to these data. In particular, color transforms are needed to exploit the very high degree of inter-component correlation and obtain competitive compression performance. Even though the state-of-the-art color transforms remove some redundancy, they disregard important details of the compression algorithm applied after the transform. Therefore, their coding performance is not optimal. We propose an optimization method called mosaic optimization for designing irreversible and reversible color transforms simultaneously optimized for any given WSI and the subsequent compression algorithm. Mosaic optimization is designed to attain reasonable computational complexity and enable continuous scanner operation. Exhaustive experimental results indicate that, for JPEG 2000 at identical compression ratios, the optimized transforms yield images more similar to the original than the other state-of-the-art transforms. Specifically, irreversible optimized transforms outperform the Karhunen-Loève Transform in terms of PSNR (up to 1.1 dB), the HDR-VDP-2 visual distortion metric (up to 3.8 dB), and the accuracy of computer-aided nuclei detection tasks (F1 score up to 0.04 higher). In addition, reversible optimized transforms achieve PSNR, HDR-VDP-2, and nuclei detection accuracy gains of up to 0.9 dB, 7.1 dB, and 0.025, respectively, when compared with the reversible color transform in lossy-to-lossless compression regimes.


Subject(s)
Data Compression/methods , Image Interpretation, Computer-Assisted/methods , Algorithms , Color , Databases, Factual , Histological Techniques , Humans , Neoplasms/diagnostic imaging
2.
IEEE Trans Med Imaging ; 37(10): 2211-2223, 2018 10.
Article in English | MEDLINE | ID: mdl-29993629

ABSTRACT

The increasing availability of digital pathology images has motivated the design of tools to foster multidisciplinary collaboration among researchers, pathologists, and computer scientists. Telepathology plays an important role in the development of collaborative tools, as it facilitates the transmission and access to pathology images by multiple users. However, the huge file size associated with pathology images usually prevents full exploitation of the collaborative telepathology system potential. Within this context, rate control (RC) is an important tool that allows meeting storage and bandwidth requirements by controlling the bit rate of the coded image. In this paper, we propose a novel graph-based RC algorithm with lossless region of interest (RoI) coding for pathology images. The algorithm, which is designed for block-based predictive transform coding methods, compresses the non-RoI in a lossy manner according to a target bit rate and the RoI in a lossless manner. It employs a graph where each node represents a constituent block of the image to be coded. By incorporating information about the coding cost similarities of blocks into the graph, a graph kernel is used to distribute a target bit budget among the non-RoI blocks. In order to increase RC accuracy, the algorithm uses a rate-lambda (R- ) model to approximate the slope of the rate-distortion curve of the non-RoI, and a graph-based approach to guarantee that the target bit rate is accurately attained. The algorithm is implemented in the High-Efficiency Video Coding standard and tested over a wide range of pathology images with multiple RoIs. Evaluation results show that it outperforms the other state-of-the-art methods designed for single images by very accurately attaining the target bit rate of the non-RoI.


Subject(s)
Cytological Techniques/methods , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Video Recording/methods , Algorithms , Humans , Lung/diagnostic imaging , Skin/diagnostic imaging
3.
Information (Basel) ; 8(4)2017 Dec.
Article in English | MEDLINE | ID: mdl-34671488

ABSTRACT

With increasing utilization of medical imaging in clinical practice and the growing dimensions of data volumes generated by various medical imaging modalities, the distribution, storage, and management of digital medical image data sets requires data compression. Over the past few decades, several image compression standards have been proposed by international standardization organizations. This paper discusses the current status of these image compression standards in medical imaging applications together with some of the legal and regulatory issues surrounding the use of compression in medical settings.

4.
IEEE Trans Med Imaging ; 35(2): 654-64, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26462084

ABSTRACT

DNA microarrays are one of the fastest-growing new technologies in the field of genetic research, and DNA microarray images continue to grow in number and size. Since analysis techniques are under active and ongoing development, storage, transmission and sharing of DNA microarray images need be addressed, with compression playing a significant role. However, existing lossless coding algorithms yield only limited compression performance (compression ratios below 2:1), whereas lossy coding methods may introduce unacceptable distortions in the analysis process. This work introduces a novel Relative Quantizer (RQ), which employs non-uniform quantization intervals designed for improved compression while bounding the impact on the DNA microarray analysis. This quantizer constrains the maximum relative error introduced into quantized imagery, devoting higher precision to pixels critical to the analysis process. For suitable parameter choices, the resulting variations in the DNA microarray analysis are less than half of those inherent to the experimental variability. Experimental results reveal that appropriate analysis can still be performed for average compression ratios exceeding 4.5:1.


Subject(s)
Data Compression/methods , Image Processing, Computer-Assisted/methods , Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/methods , DNA/analysis , DNA/chemistry , DNA/genetics , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...