Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2516: 103-112, 2022.
Article in English | MEDLINE | ID: mdl-35922624

ABSTRACT

DNA-binding transcription factors (TFs) play a central role in the gene expression of all organisms, from viruses to humans, including bacteria and archaea. The role of these proteins is the fate of gene expression in the context of environmental challenges. Because thousands of genomes have been sequenced to date, predictions of the encoded proteins are validated through the use of bioinformatics tools to obtain the necessary experimental, posterior knowledge. In this chapter, we describe three approaches to identify TFs in protein sequences. The first approach integrates the results of sequence comparisons and PFAM assignments, using as reference a manually curated collection of TFs. The second approach considers the prediction of DNA-binding structures, such as the classical helix-turn-helix (HTH); and the third approach considers a deep learning model. We suggest that all approaches must be considered together to increase the possibility of identifying new TFs in bacterial and archaeal genomes.


Subject(s)
Genome, Archaeal , Transcription Factors , Archaea/metabolism , Bacteria/metabolism , DNA/metabolism , Genome, Archaeal/genetics , Genome, Bacterial , Humans , Transcription Factors/metabolism
2.
PLoS One ; 16(7): e0254025, 2021.
Article in English | MEDLINE | ID: mdl-34214112

ABSTRACT

Archaea represent a diverse phylogenetic group that includes free-living, extremophile, mesophile, symbiont, and opportunistic organisms. These prokaryotic organisms share a high significant similarity with the basal transcriptional machinery of Eukarya, and they share regulatory mechanisms with Bacteria, such as operonic organization and DNA-binding transcription factors (TFs). In this work, we identified the repertoire of TFs in 415 archaeal genomes and compared them with their counterparts in bacterial genomes. The comparisons of TFs, at a global level and per family, allowed us to identify similarities and differences between the repertoires of regulatory proteins of bacteria and archaea. For example, 11 of 62 families are more highly abundant in archaea than bacteria, and 13 families are abundant in bacteria but not in archaea and 38 families have similar abundances in the two groups. In addition, we found that archaeal TFs have a lower isoelectric point than bacterial proteins, i.e., they contain more acidic amino acids, and are smaller than bacterial TFs. Our findings suggest a divergence occurred for the regulatory proteins, even though they are common to archaea and bacteria. We consider that this analysis contributes to the comprehension of the structure and functionality of regulatory proteins of archaeal organisms.


Subject(s)
Archaea/genetics , Bacteria/genetics , DNA, Archaeal/metabolism , DNA, Bacterial/metabolism , Genomics , Transcription Factors/metabolism , Genome Size , Genome, Archaeal , Genome, Bacterial , Isoelectric Point , Virulence
3.
PLoS One ; 15(8): e0237135, 2020.
Article in English | MEDLINE | ID: mdl-32822422

ABSTRACT

DNA-binding Transcription Factors (TFs) play a central role in regulation of gene expression in prokaryotic organisms, and similarities at the sequence level have been reported. These proteins are predicted with different abundances as a consequence of genome size, where small organisms contain a low proportion of TFs and large genomes contain a high proportion of TFs. In this work, we analyzed a collection of 668 experimentally validated TFs across 30 different species from diverse taxonomical classes, including Escherichia coli K-12, Bacillus subtilis 168, Corynebacterium glutamicum, and Streptomyces coelicolor, among others. This collection of TFs, together with 111 hidden Markov model profiles associated with DNA-binding TFs collected from diverse databases such as PFAM and DBD, was used to identify the repertoire of proteins putatively devoted to gene regulation in 1321 representative genomes of Archaea and Bacteria. The predicted regulatory proteins were posteriorly analyzed in terms of their genomic context, allowing the prediction of functions for TFs and their neighbor genes, such as genes involved in virulence, enzymatic functions, phosphorylation mechanisms, and antibiotic resistance. The functional analysis associated with PFAM groups showed diverse functional categories were significantly enriched in the collection of TFs and the proteins encoded by the neighbor genes, in particular, small-molecule binding and amino acid transmembrane transporter activities associated with the LysR family and proteins devoted to cellular aromatic compound metabolic processes or responses to drugs, stress, or abiotic stimuli in the MarR family. We consider that with the increasing data derived from new technologies, novel TFs can be identified and help improve the predictions for this class of proteins in complete genomes. The complete collection of experimentally characterized and predicted TFs is available at http://web.pcyt.unam.mx/EntrafDB/.


Subject(s)
Archaea/genetics , Archaeal Proteins/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Escherichia coli K12/genetics , Transcription Factors/genetics , Archaea/pathogenicity , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Binding Sites , DNA, Archaeal/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli K12/pathogenicity , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Bacterial , Genome, Archaeal , Genome, Bacterial , Protein Binding , Transcription Factors/metabolism , Virulence/genetics
4.
Genes (Basel) ; 11(1)2020 01 03.
Article in English | MEDLINE | ID: mdl-31947717

ABSTRACT

The ability of bacteria and archaea to modulate metabolic process, defensive response, and pathogenic capabilities depend on their repertoire of genes and capacity to regulate the expression of them. Transcription factors (TFs) have fundamental roles in controlling these processes. TFs are proteins dedicated to favor and/or impede the activity of the RNA polymerase. In prokaryotes these proteins have been grouped into families that can be found in most of the different taxonomic divisions. In this work, the association between the expansion patterns of 111 protein regulatory families was systematically evaluated in 1351 non-redundant prokaryotic genomes. This analysis provides insights into the functional and evolutionary constraints imposed on different classes of regulatory factors in bacterial and archaeal organisms. Based on their distribution, we found a relationship between the contents of some TF families and genome size. For example, nine TF families that represent 43.7% of the complete collection of TFs are closely associated with genome size; i.e., in large genomes, members of these families are also abundant, but when a genome is small, such TF family sizes are decreased. In contrast, almost 102 families (56.3% of the collection) do not exhibit or show only a low correlation with the genome size, suggesting that a large proportion of duplication or gene loss events occur independently of the genome size and that various yet-unexplored questions about the evolution of these TF families remain. In addition, we identified a group of families that have a similar distribution pattern across Bacteria and Archaea, suggesting common functional and probable coevolution processes, and a group of families universally distributed among all the genomes. Finally, a specific association between the TF families and their additional domains was identified, suggesting that the families sense specific signals or make specific protein-protein contacts to achieve the regulatory roles.


Subject(s)
Prokaryotic Cells/metabolism , Transcription Factors/analysis , Transcription Factors/genetics , Archaea/genetics , Bacteria/genetics , DNA/genetics , DNA-Binding Proteins , Genome Size/genetics , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Genomics/methods , Protein Binding , Transcriptome/genetics
5.
PLoS One ; 14(12): e0226604, 2019.
Article in English | MEDLINE | ID: mdl-31856202

ABSTRACT

In this work, we describe a systematic comparative genomic analysis of promiscuous domains in genomes of Bacteria and Archaea. A quantitative measure of domain promiscuity, the weighted domain architecture score (WDAS), was used and applied to 1317 domains in 1320 genomes of Bacteria and Archaea. A functional analysis associated with the WDAS per genome showed that 18 of 50 functional categories were identified as significantly enriched in the promiscuous domains; in particular, small-molecule binding domains, transferases domains, DNA binding domains (transcription factors), and signal transduction domains were identified as promiscuous. In contrast, non-promiscuous domains were identified as associated with 6 of 50 functional categories, and the category Function unknown was enriched. In addition, the WDASs of 52 domains correlated with genome size, i.e., WDAS values decreased as the genome size increased, suggesting that the number of combinations at larger domains increases, including domains in the superfamilies Winged helix-turn-helix and P-loop-containing nucleoside triphosphate hydrolases. Finally, based on classification of the domains according to their ancestry, we determined that the set of 52 promiscuous domains are also ancient and abundant among all the genomes, in contrast to the non-promiscuous domains. In summary, we consider that the association between these two classes of protein domains (promiscuous and non-promiscuous) provides bacterial and archaeal cells with the ability to respond to diverse environmental challenges.


Subject(s)
Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Evolution, Molecular , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Conserved Sequence , Protein Binding , Proteome
6.
PLoS One ; 14(5): e0217083, 2019.
Article in English | MEDLINE | ID: mdl-31136618

ABSTRACT

In order to identify common and specific enzymatic activities associated with the metabolism of the three cellular domains of life, the conservation and variations between the enzyme contents of Bacteria, Archaea, and Eukarya organisms were evaluated. To this end, the content of enzymes belonging to a particular pathway and their abundance and distribution in 1507 organisms that have been annotated and deposited in the KEGG database were assessed. In addition, we evaluated the consecutive enzymatic reaction pairs obtained from metabolic pathway reactions and transformed into sequences of enzymatic reactions, with catalytic activities encoded in the Enzyme Commission numbers, which are linked by a substrate. Both analyses are complementary: the first considers individual reactions associated with each organism and metabolic map, and the second evaluates the functional associations between pairs of consecutive reactions. From these comparisons, we found a set of five enzymatic reactions that were widely distributed in all the organisms and considered here as universal to Bacteria, Archaea, and Eukarya; whereas 132 pairs out of 3151 reactions were identified as significant, only 5 of them were found to be widely distributed in all the taxonomic divisions. However, these universal reactions are not widely distributed along the metabolic maps, suggesting their dispensability to all metabolic processes. Finally, we found that universal reactions are also associated with ancestral domains, such as those related to phosphorus-containing groups with a phosphate group as acceptor or those related to the ribulose-phosphate binding barrel, triosephosphate isomerase, and D-ribose-5-phosphate isomerase (RpiA) lid domain, among others. Therefore, we consider that this analysis provides clues about the functional constraints associated with the repertoire of enzymatic functions per organism.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Enzymes/metabolism , Eukaryota/metabolism , Evolution, Molecular , Metabolic Networks and Pathways , Phylogeny , Species Specificity
7.
PLoS One ; 13(4): e0195332, 2018.
Article in English | MEDLINE | ID: mdl-29614096

ABSTRACT

Gene regulation at the transcriptional level is a central process in all organisms, and DNA-binding transcription factors, known as TFs, play a fundamental role. This class of proteins usually binds at specific DNA sequences, activating or repressing gene expression. In general, TFs are composed of two domains: the DNA-binding domain (DBD) and an extra domain, which in this work we have named "companion domain" (CD). This latter could be involved in one or more functions such as ligand binding, protein-protein interactions or even with enzymatic activity. In contrast to DBDs, which have been widely characterized both experimentally and bioinformatically, information on the abundance, distribution, variability and possible role of the CDs is scarce. Here, we investigated these issues associated with the domain architectures of TFs in prokaryotic genomes. To this end, 19 families of TFs in 761 non-redundant bacterial and archaeal genomes were evaluated. In this regard we found four main groups based on the abundance and distribution in the analyzed genomes: i) LysR and TetR/AcrR; ii) AraC/XylS, SinR, and others; iii) Lrp, Fis, ArsR, and others; and iv) a group that included only two families, ArgR and BirA. Based on a classification of the organisms according to the life-styles, a major abundance of regulatory families in free-living organisms, in contrast with pathogenic, extremophilic or intracellular organisms, was identified. Finally, the protein architecture diversity associated to the 19 families considering a weight score for domain promiscuity evidenced which regulatory families were characterized by either a large diversity of CDs, here named as "promiscuous" families given the elevated number of variable domains found in those TFs, or a low diversity of CDs. Altogether this information helped us to understand the diversity and distribution of the 19 Prokaryotes TF families. Moreover, initial steps were taken to comprehend the variability of the extra domain in those TFs, which eventually might assist in evolutionary and functional studies.


Subject(s)
Archaeal Proteins/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Evolution, Molecular , Genetic Variation , Genome, Archaeal , Genome, Bacterial , Protein Conformation , Protein Domains , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...