Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063216

ABSTRACT

Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Tyrosine , Virus Replication , Chikungunya virus/drug effects , Chikungunya virus/physiology , Tyrosine/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Tyrosine/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Animals , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells , Humans , Virus Internalization/drug effects , Viral Proteins/metabolism
2.
Plants (Basel) ; 10(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201900

ABSTRACT

Currently, no specific licensed antiviral exists for treating the illness caused by dengue virus (DENV). Therefore, the search for compounds of natural origin with antiviral activity is an important area of research. In the present study, three compounds were isolated and identified from seeds of Tabernaemontana cymosa plants. The in vitro antiviral effect of those compounds and voacangine against different DENV strains was assessed using different experimental approaches: compounds added before the infection (Pre), at the same time with the virus (Trans), after the infection (Post) or compounds present in all moments of the experiment (Pre-Trans-Post, Combined treatment). In silico studies (docking and molecular dynamics) were also performed to explain the possible antiviral mechanisms. The identified compounds were three structural analogs of voacangine (voacangine-7-hydroxyindolenine, rupicoline and 3-oxo-voacangine). In the Pre-treatment, only voacangine-7-hydroxyindolenine and rupicoline inhibited the infection caused by the DENV-2/NG strain (16.4% and 29.6% infection, respectively). In the Trans-treatment approach, voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited the infection in both DENV-2/NG (11.2%, 80.4% and 75.7% infection, respectively) and DENV-2/16681 infection models (73.7%, 74.0% and 75.3% infection, respectively). The latter strain was also inhibited by 3-oxo-voacangine (82.8% infection). Moreover, voacangine (most effective virucidal agent) was also effective against one strain of DENV-1 (DENV-1/WestPac/74) and against the third strain of DENV-2 (DENV-2/S16803) (48.5% and 32.4% infection, respectively). Conversely, no inhibition was observed in the post-treatment approach. The last approach (combined) showed that voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited over 90% of infections (3.5%, 6.9% and 3.5% infection, respectively) of both strains (DENV-2/NG and DENV-2/16681). The free energy of binding obtained with an in silico approach was favorable for the E protein and compounds, which ranged between -5.1 and -6.3 kcal/mol. Finally, the complex formed between DENV-2 E protein and the best virucidal compound was stable for 50 ns. Our results show that the antiviral effect of indole alkaloids derived from T. cymose depends on the serotype and the virus strain.

3.
Viruses ; 13(6)2021 06 04.
Article in English | MEDLINE | ID: mdl-34199978

ABSTRACT

Rotavirus A (RVA) has been considered the main cause of diarrheal disease in children under five years in emergency services in both developed and developing countries. RVA belongs to the Reoviridae family, which comprises 11 segments of double-stranded RNA (dsRNA) as a genomic constellation that encodes for six structural and five to six nonstructural proteins. RVA has been classified in a binary system with Gx[Px] based on the spike protein (VP4) and the major outer capsid glycoprotein (VP7), respectively. The emerging equine-like G3P[8] DS-1-like strains reported worldwide in humans have arisen an important concern. Here, we carry out the complete genome characterization of a previously reported G3P[8] strain in order to recognize the genetic diversity of RVA circulating among infants in Colombia. A near-full genome phylogenetic analysis was done, confirming the presence of the novel equine-like G3P[8] with a Wa-like backbone for the first time in Colombia. This study demonstrated the importance of surveillance of emerging viruses in the Colombian population; furthermore, additional studies must focus on the understanding of the spread and transmission dynamic of this important RVA strain in different areas of the country.


Subject(s)
Diarrhea/epidemiology , Diarrhea/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus , Child , Colombia/epidemiology , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Diarrhea/diagnosis , Genes, Viral , Genome, Viral , Genomics , Genotype , Humans , Phylogeny , Retrospective Studies , Rotavirus/classification , Rotavirus/genetics , Rotavirus Infections/diagnosis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...