Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 31(7): e02409, 2021 10.
Article in English | MEDLINE | ID: mdl-34255400

ABSTRACT

Harvesting models are based upon the ideology that removing large, old individuals provides space for young, fast-growing counterparts that can maximize (fisheries) yields while maintaining population stability and ecosystem function. Yet, this compensatory density dependent response has rarely been examined in multispecies systems. We combined extensive data sets from coral-reef fisheries across a suite of Pacific islands and provided unique context to the universal assumptions of compensatory density dependence. We reported that size-and-age truncation only existed for 49% of target coral-reef fishes exposed to growing fishing pressure across a suite of Pacific islands. In contrast, most of the remaining species slowly disappeared from landings and reefs with limited change to their size structure (i.e., little to no compensation), often becoming replaced by smaller-bodied sister species. To understand these remarkable and disparate differences, we constructed phylogenies for dominant fish families and discovered that large patristic distances between sister species, or greater phylogenetic isolation, predicted size-and-age truncation. Isolated species appeared to have greater niche dominance or breadth, supported by their faster growth rates compared to species with similar sizes and within similar guilds, and many also have group foraging behavior. In contrast, closely related species may have more restricted, realized niches that led to their disappearance and replacement. We conclude that phylogenetic attributes offered novel guidance to proactively manage multispecies fisheries and improve our understanding of ecological niches and ecosystem stability.


Subject(s)
Anthozoa , Fisheries , Animals , Conservation of Natural Resources , Coral Reefs , Ecosystem , Fishes , Phylogeny
2.
PLoS One ; 13(5): e0198068, 2018.
Article in English | MEDLINE | ID: mdl-29852023

ABSTRACT

The consistent supply of fresh fish to commercial markets may mask growing fishing footprints and localized depletions, as fishing expands to deeper/further reefs, smaller fish, and more resilient species. To test this hypothesis, species-based records and fisher interviews were gathered over one year within a large, demand-driven coral-reef fishery in Chuuk, Micronesia. We first assessed catch statistics with respect to high windspeeds and moon phases that are known to constrain both catch and effort. While lower daily catch success was predicted by higher windspeeds and greater lunar illumination, total daily landings fluctuated less than fishing success across environmental gradients. Instead, daily landings were mainly driven by the number of flights from Chuuk to Guam (i.e., international demand). Given that demand masked local drivers of overall catch volume, we further evaluated species-based indicators of fisheries exploitation. Most target species (75%) had either a positively skewed size distribution or proportional contributions that were dependent upon favorable conditions (i.e. season and moon phases). Skewed size distributions indicated truncated growth associated with fishing mortality, and in turn, suggested that size-based management policies may be most effective for these species. In contrast, environmentally-constrained catch success indicated species that may be more susceptible to growing fishing footprints and may respond better to gear/quota/area policies compared to size policies. Species-based responses offered a simplified means to combine species into fisheries management units. Finally, a comparison of commercial and subsistence landings showed higher vulnerability to fishing among species preferentially targeted by commercial fisheries, offering new insights into how commercial harvesting can disproportionately impact resources, despite having lower annual catch volumes.


Subject(s)
Coral Reefs , Environment , Fisheries/statistics & numerical data , Conservation of Natural Resources , Humans , Micronesia , Population Dynamics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...