Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (184)2022 06 23.
Article in English | MEDLINE | ID: mdl-35815988

ABSTRACT

Microfluidic systems have greatly improved immunoassay techniques. However, many microfabrication techniques require specialized, expensive, or complicated equipment, making fabrication costly and incompatible with mass production, which is one of the most important preconditions for point-of-care tests (POCT) to be adopted in low-resource settings. This work describes the fabrication process of an acrylic (polymethylmethacrylate, PMMA) device for nanoparticle-conjugated enzymatic immunoassay testing using the computer numerical control (CNC) micromilling technique. The functioning of the microfluidic device is shown by performing an immunoassay to detect a commercial antibody using lysozyme as a model antigen conjugated to 100 nm magnetic nanoparticles. This device integrates a physical staggered restriction of only 5 µm in height, used to capture magnetic microparticles that make up a magnetic trap by placing an external magnet. In this way, the magnetic force on the immunosupport of conjugated nanoparticles is enough to capture them and resist flow drag. This microfluidic device is particularly suitable for low-cost mass production without the loss of precision for immunoassay performance.


Subject(s)
Magnetite Nanoparticles , Microfluidic Analytical Techniques , Computers , Equipment Design , Immunoassay/methods , Lab-On-A-Chip Devices , Microfluidics/methods
2.
Lab Chip ; 21(1): 93-104, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33319882

ABSTRACT

The applications of serology tests to the virus SARS-CoV-2 are diverse, ranging from diagnosing COVID-19, understanding the humoral response to this disease, and estimating its prevalence in a population, to modeling the course of the pandemic. COVID-19 serology assays will significantly benefit from sensitive and reliable technologies that can process dozens of samples in parallel, thus reducing costs and time; however, they will also benefit from biosensors that can assess antibody reactivities to multiple SARS-CoV-2 antigens. Here, we report a high-throughput microfluidic device that can assess antibody reactivities against four SARS-CoV-2 antigens from up to 50 serum samples in parallel. This semi-automatic platform measures IgG and IgM levels against four SARS-CoV-2 proteins: the spike protein (S), the S1 subunit (S1), the receptor-binding domain (RBD), and the nucleocapsid (N). After assay optimization, we evaluated sera from infected individuals with COVID-19 and a cohort of archival samples from 2018. The assay achieved a sensitivity of 95% and a specificity of 91%. Nonetheless, both parameters increased to 100% when evaluating sera from individuals in the third week after symptom onset. To further assess our platform's utility, we monitored the antibody titers from 5 COVID-19 patients over a time course of several weeks. Our platform can aid in global efforts to control and understand COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/immunology , Area Under Curve , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay/instrumentation , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Lab-On-A-Chip Devices , Longitudinal Studies , Phosphoproteins/immunology , Protein Domains/immunology , ROC Curve , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...