Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(6): e17018, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484312

ABSTRACT

Harmful algae blooms (HABs) are a conspicuous phenomenon that affect the coastal zone worldwide. Aquaculture industry zones are not excluded from being affected by HAB that cause organism mortality and jeopardize their innocuity due to the contamination by phytotoxins with the concomitant economic losses. Direct ingestion of metabolites from HAB species or organisms contaminated with phycotoxins together with dermal absorption of dissolved metabolites (DM), including toxins, are the two main routes of poisoning. From these poisoning routes, the effect of DM, particularly paralytic shellfish toxins (PST), has been relatively understudied. This intoxication route can be conspicuous and could be involved in many significant mortalities of cultivated marine organisms. In this study, white shrimp juveniles (2.1 g wet weight) of Litopenaeus vannamei were exposed to extracts of 104, 105 and 106 cells/L of the dinoflagellate Gymnodinium catenatum, a PST producer. The experiment ended after 17 h of exposure when shrimps exposed to 106 cells/L extract started to die and the rest of the shrimps, from this and other treatments, did not respond to gentle physical stimulus and their swimming activity was low and erratic. Toxin concentrations were determined using high performance liquid chromatography while qualitative and quantitative histological damages were assessed on the tissues. In general, most toxins were accumulated in the hepatopancreas where more than 90% were found. Other tissues such as intestine, muscle, and gills contained less than 10% of toxins. Compared to the control, the main significative tissue damages were, loss of up to 80% of the nerve cord, 40% of the muscle coverage area, and reduction of the gill lamella width. Also, atrophy in hepatopancreas was observed, manifested by a decrease in the height of B cells, lumen degeneration and thinning of tubules. Some damages were more evident when shrimps were exposed to higher concentrated extracts of G. catenatum, however, not all damages were progressive and proportional to the extract concentration. These data confirm that PST dissolved enter the shrimp, possibly via the gills, and suggest that dissolved metabolites, including PST, may cause tissue damage. Other dissolved metabolites produced by G. catenatum, alone or in synergy, may also be involved. These results also pointed out the importance of dissolved molecules produced for this dinoflagellate and the potential effect on cultured shrimp.

2.
Toxins (Basel) ; 14(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36356010

ABSTRACT

In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L-1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell-1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Humans , Marine Toxins/analysis , Tandem Mass Spectrometry/methods , Gulf of Mexico , Dinoflagellida/chemistry , Shellfish/analysis , Saxitoxin
3.
Toxins (Basel) ; 14(9)2022 09 03.
Article in English | MEDLINE | ID: mdl-36136554

ABSTRACT

Allelopathy between phytoplankton organisms is promoted by substances released into the marine environment that limit the presence of the dominating species. We evaluated the allelopathic effects and response of cell-free media of Chattonella marina var. marina and Gymnodinium impudicum in the toxic dinoflagellate Gymnodinium catenatum. Additionally, single- and four-cell chains of G. catenatum isolated from media with allelochemicals were cultured to evaluate the effects of post exposure on growth and cell viability. Cell diagnosis showed growth limitation and an increase in cell volume, which reduced mobility and led to cell lysis. When G. catenatum was exposed to cell-free media of C. marina and G. impudicum, temporary cysts and an increased concentration of paralytic shellfish toxins were observed. After exposure to allelochemicals, the toxin profile of G. catenatum cells in the allelopathy experiments was composed of gonyautoxins 2/3 (GTX2/3), decarcarbamoyl (dcSTX, dcGTX2/3), and the sulfocarbamoyl toxins (B1 and C1/2). A difference in toxicity (pg STXeq cell−1) was observed between G. catenatum cells in the control and those exposed to the filtrates of C. marina var. marina and G. impudicum. Single cells of G. catenatum had a lower growth rate, whereas chain-forming cells had a higher growth rate. We suggest that a low number of G. catenatum cells can survive the allelopathic effect. We hypothesize that the survival strategy of G. catenatum is migration through the chemical cloud, encystment, and increased toxicity.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Allelopathy , Humans , Marine Toxins/toxicity , Pheromones/pharmacology
4.
Toxins (Basel) ; 14(7)2022 07 18.
Article in English | MEDLINE | ID: mdl-35878239

ABSTRACT

The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures (200 mL, 21.0 °C, 120 µmol photon m-2s-1, and a 12:12 h light-dark cycle) with f/2 + Se medium using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio of 64:1 (3188 cells mL-1 and 0.34 div day-1) with the BAMAZ and BAPAZ strains. A total of ten saxitoxin analogs dominated by N-sulfocarbamoyl (60-90 mol%), decarbamoyl (10-20 mol%), and carbamoyl (5-10 mol%) toxins were detected. The different N:P ratios did not cause significant changes in the PST content or toxin profiles of the strains from both bays, although they did affect cell abundance.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Toxins, Biological , Animals , Chromatography, High Pressure Liquid , Mammals , Saxitoxin/analysis
5.
Toxicon ; 199: 68-71, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34087288

ABSTRACT

Paralytic shellfish toxin (PST) content in the dinoflagellate Gymnodinium catenatum changes with culture age, with a higher toxin concentration in the logarithmic phase that decreases when the culture ages. The gene copy number (GCN) of domains sxtA1 and sxtA4 was higher in the lag and stationary phase, and lag phase, respectively. No relationship was found between the GCN of the domains sxtA4 and sxtA1 with the PST content in G. catenatum.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Toxins, Biological , Dinoflagellida/genetics , Gene Dosage , Humans , Shellfish
6.
Mar Drugs ; 19(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572171

ABSTRACT

Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.


Subject(s)
Bivalvia/metabolism , Marine Toxins/analysis , Animals , Heterocyclic Compounds, 3-Ring/analysis , Hydrocarbons, Cyclic/analysis , Imines/analysis , Marine Toxins/chemistry , Mollusk Venoms , Okadaic Acid/analysis , Oxocins/analysis , Solubility
7.
Mar Drugs ; 17(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597874

ABSTRACT

Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.


Subject(s)
Ciguatera Poisoning/epidemiology , Ciguatoxins/chemistry , Animals , Fishes , Foodborne Diseases/epidemiology , Humans , Mexico/epidemiology , Seafood/analysis
8.
Article in English | MEDLINE | ID: mdl-25565135

ABSTRACT

The paralytic shellfish toxin (PST) profiles of Gymnodinium catenatum Graham have been reported for several strains from the Pacific coast of Mexico cultured under different laboratory conditions, as well as from natural populations. Up to 15 saxitoxin analogues occurred and the quantity of each toxin depended on the growth phase and culture conditions. Previous analysis of toxin profiles of G. catenatum isolated from Mexico have been based on post-column oxidation liquid chromatography with fluorescence detection (LC-FLD), a method prone to artefacts and non-specificity, leading to misinterpretation of toxin composition. We describe, for the first time, the complete toxin profile for several G. catenatum strains from diverse locations of the Pacific coast of Mexico. The new results confirmed previous reports on the dominance of the less potent sulfocarbamoyl toxins (C1/2); significant differences, however, in the composition (e.g., absence of saxitoxin, gonyautoxin 2/3 and neosaxitoxin) were revealed in our confirmatory analysis. The LC-MS/MS analyses also indicated at least seven putative benzoyl toxin analogues and provided support for their existence. This new toxin profile shows a high similarity (> 80%) to the profiles reported from several regions around the world, suggesting low genetic variability among global populations.


Subject(s)
Dinoflagellida/chemistry , Saxitoxin/analogs & derivatives , Chromatography, High Pressure Liquid , Mexico , Saxitoxin/analysis , Tandem Mass Spectrometry
9.
Toxicon ; 90: 199-212, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25151371

ABSTRACT

The effects of temperature on growth, cell toxicity, toxin content, and profile of paralytic shellfish toxins was determined in eight isolates of Gymnodinium catenatum from several localities along the Pacific Coast of Mexico. The isolates were cultivated in modified f/2 media with Se (10(-8) M), and a reduced concentration of Cu (10(-8) M), under a 12 h:12 h day-night cycle with an irradiance of 150 µE m(-2) s(-1). Isolates were progressively adapted for three generations to each of the temperatures (16, 19, 22, 24, 27, 30, and 33 °C). The cultures were grown in 125 mL Erlenmeyer flasks with 60 mL of media and harvested by filtration in late exponential growth. Toxins were analyzed by HPLC with a post-column oxidation and fluorescent detection (FLD). G. catenatum isolates tolerate temperatures between 16 and 33 °C, with maximum growth rates of 0.32 and 0.39 div day(-1) at 21 °C and 24 °C, respectively; maximum cell densities of 4700 and 5500 cells mL(-1) were obtained at 27 and 21 °C, respectively. No effect of toxicity per cell with temperature was observed, varying between 10.10 and 28.19 pgSXTeq cell(-1). Ten saxitoxin analogues were detected in all isolates, observing changes in the toxin profile with temperature. C1/2 toxins decreased from 80% mol at 16 °C to 20% mol at 33 °C, B1/2 toxins increased from 19% mol at 16 °C to 42% mol at 33 °C, and decarbamoyl toxins were more abundant at 21 °C. These results show that G. catenatum isolates from different regions of the Pacific coast of Mexico have a similar response to temperature and that this parameter can modify growth rate, cell density, and toxin profile of the species, particularly the decarbamoyl and sulfocarbamoyl toxins.


Subject(s)
Dinoflagellida/growth & development , Dinoflagellida/metabolism , Marine Toxins/metabolism , Seawater , Temperature
10.
Infect Disord Drug Targets ; 13(2): 133-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23808873

ABSTRACT

This paper presents unequivocal results about the presence of trypanothione and its precursor glutathionespermidine from the opportunistic human pathogen Acanthamoeba polyphaga. They were isolated by RP-HPLC as thiolbimane derivatives and characterized using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF/TOF). Additionally RP-HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were also present in A. polyphaga. Besides trypanothione, we want to report four new peptides in trophozoites, a tetrapeptide, a hexapeptide, a heptapeptide and a nonapeptide. Trypanothione and two of the thiol peptides, the hexapeptide and heptapeptide, are oxidized since the reduced forms increase in amount when the normal extract is treated by DTT or by electrolytic reduction that convert the oxidized forms to reduced ones. On the other hand, they disappear when the amoeba extract is treated with NEM or when the amoeba culture is treated with various inhibitors of NADPH-dependent disulfidereducing enzymes. Comparison of the thiol peptides, including trypanothione from A. polyphaga with extracts from human lymphocytes showed that they are not present in the latter. Therefore, some of the peptides here reported could be used as antigens for rapid detection of these parasites. In regard to the presence of the enzymes that synthesize and reduce trypanothione in A. polyphaga we suggest that they can be used as drug targets.


Subject(s)
Acanthamoeba/chemistry , Acanthamoeba/metabolism , Glutathione/analogs & derivatives , Peptides/chemistry , Protozoan Proteins/chemistry , Spermidine/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Glutathione/chemistry , Glutathione/isolation & purification , Glutathione/metabolism , Humans , Peptides/isolation & purification , Peptides/metabolism , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spermidine/chemistry , Spermidine/isolation & purification , Spermidine/metabolism
11.
Rev Biol Trop ; 60(1): 173-86, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22458217

ABSTRACT

Gymnodinium bloom events are of concern, since they produce toxins, which have unfavorable consequences to marine ecosystems, human health and the economy. This report describes the physico-chemical conditions that were present during the algal bloom event on May 2010 in Bahía Manzanillo and Bahía Santiago, Colima, Mexico. For this, seawater nutrient analysis, phytoplankton counts, identification, and toxicity tests were undertaken. Nutrients in seawater were determined using colorimetric techniques, the higher concentrations (8.88 microM DIN, 0.78 microM PO4 and 24.34 microM SiO2) were related with upwelling waters that promoted the algal bloom that began after registering the year lowest sea-surface temperature, favoring the rapid growth of G. catenatum (up to 1.02 x 10(7) cells/L). Phytoplankton counting was carried out using sedimentation chambers and cells enumerated on appropriated area. The bloom persisted in the bays for approximately two weeks and was associated with toxicity (determined with HPLC) in local oysters (1525.8 microg STXeq/100g), and in phytoplankton (10.9 pg STXeq/cells) samples. Strong variations in cell toxicity (1.4 to 10.9pg STXeq/cells), most likely reflected the availability of inorganic nutrients. The toxin profile of the phytoplankton samples consisted of 11 toxins and resembled those recorded for several strains of G. catenatum isolated from other coastal areas of Mexico.


Subject(s)
Dinoflagellida/growth & development , Eutrophication/physiology , Marine Toxins/analysis , Bays , Dinoflagellida/chemistry , Environmental Monitoring , Mexico , Population Density , Seawater
12.
Rev. biol. trop ; 60(1): 173-186, Mar. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-657771

ABSTRACT

Gymnodinium bloom events are of concern, since they produce toxins, which have unfavorable consequences to marine ecosystems, human health and the economy. This report describes the physico-chemical conditions that were present during the algal bloom event on May 2010 in Bahía Manzanillo and Bahía Santiago, Colima, Mexico. For this, seawater nutrient analysis, phytoplankton counts, identification, and toxicity tests were undertaken. Nutrients in seawater were determined using colorimetric techniques, the higher concentrations (8.88μM DIN, 0.78μM PO4 and 24.34μM SiO2) were related with upwelling waters that promoted the algal bloom that began after registering the year lowest sea-surface temperature, favoring the rapid growth of G. catenatum (up to 1.02 x10(7)cells/L). Phytoplankton counting was carried out using sedimentation chambers and cells enumerated on appropriated area. The bloom persisted in the bays for approximately two weeks and was associated with toxicity (determined with HPLC) in local oysters (1525.8μg STXeq/100g), and in phytoplankton (10.9pg STXeq/cells) samples. Strong variations in cell toxicity (1.4 to 10.9pg STXeq/cells), most likely reflected the availability of inorganic nutrients. The toxin profile of the phytoplankton samples consisted of 11 toxins and resembled those recorded for several strains of G. catenatum isolated from other coastal areas of Mexico.


La proliferación de Gymnodinium son motivo de preocupación, debido a que en algunas circunstancias producen toxinas, que tienen consecuencias desfavorables para los ecosistemas marinos, la salud humana y la economía. Este trabajo describe las condiciones fisicoquímicas presentes durante una proliferación algal detectado en mayo de 2010 en la Bahía de Santiago y Bahía Manzanillo (Colima, México). La proliferación algal inició poco tiempo después de registrarse las temperaturas oceánicas superficiales más bajas del año, las cuales permitieron un aumento de las concentraciones de nutrientes (8.88μM DIN, 0.78μM PO4 and 24.34μM SiO2) que favorecieron el desarrollo de G. catenatum (hasta 1.02 x10(7)cel/L). Esta proliferación se detectó en las bahías durante dos semanas y fue relacionada con toxicidad en ostiones de la localidad (1525.8μg STXeq/100g) y en muestras de fitoplancton (10.9pg STXeq/cel). Fuertes variaciones en la toxicidad de G. catenatum (1.4 a 10.9pg STXeq/cel) pudieron reflejar la disponibilidad de nutrientes inorgánicos. El perfil de toxinas de las muestras del fitoplancton consistieron en 11 toxinas semejantes a las de varias cepas de G. catenatum aisladas de otras áreas de las costas de México.


Subject(s)
Dinoflagellida/growth & development , Eutrophication/physiology , Marine Toxins/analysis , Bays , Dinoflagellida/chemistry , Environmental Monitoring , Mexico , Population Density , Seawater
13.
Mar Drugs ; 8(6): 1935-61, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20631876

ABSTRACT

This review presents a detailed analysis of the state of knowledge of studies done in Mexico related to the dinoflagellate Gymnodinium catenatum, a paralytic toxin producer. This species was first reported in the Gulf of California in 1939; since then most studies in Mexico have focused on local blooms and seasonal variations. G. catenatum is most abundant during March and April, usually associated with water temperatures between 18 and 25 °C and an increase in nutrients. In vitro studies of G. catenatum strains from different bays along the Pacific coast of Mexico show that this species can grow in wide ranges of salinities, temperatures, and N:P ratios. Latitudinal differences are observed in the toxicity and toxin profile, but the presence of dcSTX, dcGTX2-3, C1, and C2 are usual components. A common characteristic of the toxin profile found in shellfish, when G. catenatum is present in the coastal environment, is the detection of dcGTX2-3, dcSTX, C1, and C2. Few bioassay studies have reported effects in mollusks and lethal effects in mice, and shrimp; however no adverse effects have been observed in the copepod Acartia clausi. Interestingly, genetic sequencing of D1-D2 LSU rDNA revealed that it differs only in one base pair, compared with strains from other regions.


Subject(s)
Dinoflagellida/growth & development , Dinoflagellida/physiology , Phytoplankton/growth & development , Phytoplankton/physiology , Animals , Food Contamination/prevention & control , Harmful Algal Bloom , Humans , Mexico/epidemiology , Pacific Ocean , Saxitoxin/metabolism , Saxitoxin/toxicity , Seasons , Shellfish/analysis , Shellfish/microbiology , Shellfish Poisoning/epidemiology , Shellfish Poisoning/prevention & control , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...