Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(7): e0039724, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38975758

ABSTRACT

Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.


Subject(s)
Beer , Fermentation , Fungal Proteins , Maltose , Saccharomyces , Trisaccharides , Maltose/metabolism , Trisaccharides/metabolism , Saccharomyces/genetics , Saccharomyces/metabolism , Beer/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Biological Transport , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Gene Expression Regulation, Fungal
2.
ACS Omega ; 8(35): 31725-31737, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692242

ABSTRACT

The cadmium sulfide (CdS) n-type semiconductor is one of the most used as a window layer in thin-film solar cells, such as CdTe, CIS, CIGS, and CZTS. Optoelectronic properties are the most important characteristics for window materials. CdS thin films obtained using the chemical bath deposition technique (CBD) have been reported; however, large amounts of precursor solutions are used, which generate considerable amounts of toxic waste. The aim of this work is to reduce the amount of precursor solutions used for CdS growth; for this, it is necessary to consider an efficient position for the substrate inside the reactor container and at the same time allow obtaining CdS thin films with adequate physical properties to be applied in the photovoltaic solar cell development. CdS thin films were deposited on soda-lime/SnO2:F substrates (FTO) using the CBD technique; the substrates were placed in three different arrangements [rack system, step system (up), and step system (down)]. CdS samples with areas of 4 cm2 and a thickness of 27-48 nm were obtained; the X-ray diffraction patterns show CdS thin films with different polycrystalline structures. The morphological measurements reveal different surface formations depending on the substrate position, and resistivity values of around 105 Ω*cm were measured. UV-vis spectra show transmittance values of around 45-94% in the visible region with band gap energy values of around 2.1-2.36 eV. The best physical properties of CdS thin films and an efficient CBD process were obtained when the FTO substrates were located near the bottom of the reactor container with the FTO side down, leading to an optimal configuration that allows reducing the amount of precursor solutions and in this way reduces the toxic waste generated. These results are important in the photovoltaic technology process and environmental impact.

3.
Noncoding RNA Res ; 7(2): 89-97, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35387280

ABSTRACT

Plant-derived miRNAs can be found in the human body after dietary intake, and they can affect post-transcriptional gene regulation in human. It is important to identify targets to determine the possible effects in human genes by using computational approach. In this study, 787 possible mRNAs human targets were predicted by 84 miRNAs of wheat. A total of 14 miRNAs were identified with individual binding to 33 mRNAs associated with schizophrenia, epilepsy, neurodevelopmental disorders, and various cancers, located in the 3'UTR of the mRNA. A functional enrichment was carried out, where the results showed associations to pathways such as dopaminergic synapse (hsa04728), and signaling pathways, significantly associated with the target genes. The prediction of target mRNAs in humans by wheat miRNAs, offer candidates that could facilitate the search and verification, which could be of relevance for future projects and therefor contribute in the therapeutic treatment of various human diseases.

4.
Microbiol Resour Announc ; 10(17)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33927041

ABSTRACT

Bacillus albus is a new species, but it lies on the borderline with Bacillus thuringiensis In this work, we report a strain previously identified as Bacillus thuringiensis IB84, which now, based on average nucleotide identity and rRNA 16S, gyrB, groEL, and xre gene sequences, must be identified as Bacillus albus.

5.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33664148

ABSTRACT

Bacillus toyonensis is a recently described species related to Bacillus cereus and Bacillus thuringiensis The GM18 strain previously identified as B. thuringiensis is now classified as B. toyonensis based on the RNA 16S sequence and whole-genome average nucleotide identity. The genome analysis revealed the presence of insecticide, nematicide, and antitumoral proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...