Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Healthcare (Basel) ; 12(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891182

ABSTRACT

BACKGROUND: Exercise is an accepted intervention to improve the quality of life (QoL) of breast cancer patients. Exercise programs have been developed, and all have shown satisfactory results in improving the QoL. There is a lack of research comparing different prescription modalities. The aim of this study is to evaluate the effectiveness of physical exercise (in-person and home-based, compared to the exercise recommendation) on the QoL in breast cancer patients actively undergoing treatment. METHODS: This is a randomized clinical trial with three groups (in-person: guided and supervised in-person exercise program; home-based exercise: guided and supervised exercise program with streaming monitoring both as a intervention groups; and recommendation: exercise recommendation as a control group). The QoL was measured using the EORTIC QLQ-C30 questionnaire. A baseline and 24-week analysis were investigated. RESULTS: The total sample analyzed was n = 80. The QoL improved significantly at 24 weeks in the face-to-face and home-based exercise groups, but not in the control group. Exercise in all modalities improved fatigue, nausea, vomiting, appetite, and constipation. The QoL at 24 weeks depended on active chemotherapy, tumor type, and assigned exercise group (r2 = 0.503; p < 0.001). CONCLUSIONS: The QoL in breast cancer patients undergoing active treatment improved after a 24-week exercise program, especially in face-to-face and home-based exercise. Home-based exercise and streaming-based recommendation is a viable option for exercise recommendation.

2.
Cancers (Basel) ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791989

ABSTRACT

The purpose of the present study was to analyze the effect of a synchronous-supervised online home-based exercise program (HBG) during 24 weeks on body composition, physical fitness and adherence compared to an exercise recommendation group (ERG) without supervision with patients undergoing breast cancer treatment. Fifty-nine female breast cancer patients (31 in HBG and 28 in the ERG) undergoing cancer treatments participated in the present randomized clinical trial. The exercise program consisted of a 60 min combined resistance and aerobic supervised exercise session (6-8 points on Borg Scale CR-10, moderate intensity), twice a week during 24 weeks. The exercise recommendation group only received general recommendations to comply with the current ACSM guidelines. Body composition and physical fitness were assessed at baseline, 12 weeks and 24 weeks of the program. Adherence to the intervention was measured according to the minutes of exercise completed per session during each week. A general linear model of two-way repeated measures showed significant improvements (p < 0.05) in physical fitness that were observed in the home-based exercise group at the baseline, 12-week and 24-week assessments compared to the exercise recommendation group. Adherence was also higher in the home-based exercise group. However, no changes (p > 0.05) in body composition between groups and moments were observed. In this sense, supervised home-based exercise interventions can be an interesting strategy to improve physical fitness and adherence rates in breast cancer patients undergoing treatment.

3.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664583

ABSTRACT

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Subject(s)
Carcinoma, Hepatocellular , Fatty Acid-Binding Proteins , Ferroptosis , Liver Neoplasms , Neoplasm Proteins , Obesity , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/etiology , Animals , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Mice , Liver Neoplasms/metabolism , Liver Neoplasms/etiology , Obesity/complications , Obesity/metabolism , Male , Tumor Microenvironment/immunology , Humans , Mice, Inbred C57BL , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
4.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459068

ABSTRACT

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Subject(s)
Hunger , MicroRNAs , Animals , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Hunger/physiology , Hypothalamus/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Obesity/metabolism
5.
Nutrients ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474711

ABSTRACT

(1) Background: Ultra-endurance exercise involves a high physical impact, resulting in muscle damage, inflammatory response and production of free radicals that alter the body's oxidative state. Supplementation with antioxidants, such as beetroot, may improve recovery in ultra-endurance runners. The aim of this study was to determine whether there is a correlation between beetroot intake and recovery of serum oxidative status, inflammatory response and muscle damage parameters after an ultra-endurance race. (2) Methods: An observational and longitudinal study was conducted by means of surveys and blood samples collected from 32 runners during the IX Penyagolosa Trails CSP®® race and the two following days. The variables C-reactive protein (CRP), lactate dehydrogenase (LDH), creatine kinase (CK), the activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) as well as the oxidative damage markers malondialdehyde (MDA), carbonyl groups (CG) and loss of muscle strength using the squat jump (SJ) test were analyzed to discriminate whether beetroot consumption can modulate the recovery of ultra-trail runners. (3) Results: Significant differences were observed between runners who ingested beetroot and those who did not, in terms of oxidative status, specifically in serum GPx activity at 24 and 48 h, muscle damage variables CK and LDH and regarding the SJ test results at the finish line. Therefore, the intake of supplements containing beetroot positively influences the recovery of serum oxidative status and muscle damage after ultra-endurance running.


Subject(s)
Antioxidants , Oxidative Stress , Longitudinal Studies , Antioxidants/metabolism , Oxidation-Reduction , Dietary Supplements , Vegetables/metabolism , Muscles/metabolism , Muscle, Skeletal/metabolism
6.
Nat Commun ; 15(1): 1247, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341404

ABSTRACT

Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.


Subject(s)
Liver Diseases , Liver Regeneration , Animals , Liver Regeneration/physiology , Liver/metabolism , Hepatocytes/metabolism , Liver Diseases/metabolism , Disease Models, Animal , Cell Proliferation
7.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293157

ABSTRACT

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.

8.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38187697

ABSTRACT

Desmosterol and cholesterol are essential lipid components of the sperm plasma membrane. Cholesterol efflux is required for capacitation, a process through which sperm acquire fertilizing ability. In this study, using a transgenic mouse model overexpressing 24-dehydrocholesterol reductase (DHCR24), an enzyme in the sterol biosynthesis pathway responsible for the conversion of desmosterol to cholesterol, we show that disruption of sterol homeostasis during spermatogenesis led to defective sperm morphology characterized by incomplete mitochondrial packing in the midpiece, reduced sperm count and motility, and a decline in male fertility with increasing paternal age, without changes in body fat composition. Sperm depleted of desmosterol exhibit inefficiency in the acrosome reaction, metabolic dysfunction, and an inability to fertilize the egg. These findings provide molecular insights into sterol homeostasis for sperm capacitation and its impact on male fertility.

9.
J Clin Invest ; 134(4)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175710

ABSTRACT

Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.


Subject(s)
Atherosclerosis , Lipase , Mice , Animals , Triglycerides/metabolism , Lipase/genetics , Lipase/metabolism , Lipolysis , Lipid Metabolism , Endothelium, Vascular/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism
10.
Nat Commun ; 14(1): 8251, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086791

ABSTRACT

Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.


Subject(s)
Angiogenesis , Endothelial Cells , Animals , Mice , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Angiopoietins/metabolism , Endothelial Cells/metabolism , Mice, Knockout
11.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014178

ABSTRACT

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

12.
Nat Commun ; 14(1): 5405, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669951

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , AMP-Activated Protein Kinases , Inflammation , Phosphorylation , Protein Serine-Threonine Kinases
13.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37502892

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.

14.
Eur J Pediatr ; 182(9): 4237-4245, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37452844

ABSTRACT

Numerous studies have shown that quality improvement methods can reduce the use of medications in the management of bronchiolitis. Our objective is to identify factors related to the overuse of salbutamol in the treatment of bronchiolitis before and after an improvement initiative. Observational study of sociodemographic and clinical factors associated with the use of salbutamol in children diagnosed with bronchiolitis. This was a secondary analysis of a prospective cohort study conducted at 135 primary care (PC) centers and eight pediatric emergency departments (ED) in the Osakidetza/Basque Health Service (Spain) in two epidemic seasons between which a bronchiolitis integrated care pathway (BICP) had been implemented: pre-intervention season from October 2018 to March 2019 and post-intervention season from October 2019 to March 2020. Generalized linear mixed models were used to estimate association of studied variables on use of salbutamol over the two seasons. Four thousand one hundred thirty-four ED attendances and 8573 PC visits were included, of which 1936 (46.8%). And 4067 (47.4%) occurred in the post-intervention period respectively. Six independent risk factors were associated with overuse of salbutamol in both seasons: age ≥ 1 year, aOR 2.32 (2.01 to 2.68) in PC centers, and aOR 6.84 (4.98 to 9.39) in EDs; being seen in the last third of the bronchiolitis season, aOR 1.82 (1.51 to 2.18) in PC centers and aOR 1.78 (1.19 to 2.64) in EDs; making more than one visit to the PC center, aOR 4.18 (3.32 to 5.27) or the ED, aOR 2.06 (1.59 to 2.66); being seen by a general practitioner, aOR 1.97 (1.58 to 2.46) in PC centers; and having a more severe episode, aOR 3.01 (1.89 to 4.79) in EDs.     Conclusion:There are factors associated with salbutamol overuse in children diagnosed with bronchiolitis in PC and emergency settings that persist after the deployment of quality improvement initiatives. What is Known: • Quality improvement initiatives have been shown to decrease the use of non-evidence-based treatments and testing in bronchiolitis. • The magnitude and pattern of change in the use of medications linked to the quality improvement initiatives are not uniform across the same health service. What is New: • Children diagnosed with bronchiolitis ≥ 1 year of age, seen in the last third of the bronchiolitis season, attending more than once, treated by a general practitioner, and/or with more severe episodes are more likely to be treated with salbutamol. • These factors may remain present despite the implementation of improvement initiatives focused on reducing the use of medications in the management of bronchiolitis.


Subject(s)
Albuterol , Bronchiolitis , Child , Humans , Infant , Albuterol/therapeutic use , Bronchiolitis/epidemiology , Emergency Service, Hospital , Prospective Studies , Risk Factors , Child, Preschool
15.
iScience ; 26(5): 106613, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37128603

ABSTRACT

Niemann-Pick disease type C (NP-C) is a genetic lysosomal disorder associated with progressive neurodegenerative phenotypes. Its therapeutic options are very limited. Here, we show that lithium treatment improves ataxia and feeding phenotypes, attenuates cerebellar inflammation and degeneration, and extends survival in Npc1 mouse models. In addition, lithium suppresses STING activation, SREBP2 processing to its mature form and the expression of the target genes in the Npc1 mice and in Npc1-deficient fibroblasts. Lithium impedes STING/SREBP2 transport from the ER to the Golgi, a step required for STING activation and SREBP2 processing, probably by lowering cytosolic calcium concentrations. This effect of lithium on STING/SREBP2 transport provides a mechanistic explanation for lithium's effects on Npc1 mice. Thus, this study reveals a potential therapeutic option for NP-C patients as well as a strategy to reduce active STING/SREBP2 pathway.

16.
Nat Aging ; 3(1): 64-81, 2023 01.
Article in English | MEDLINE | ID: mdl-36743663

ABSTRACT

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Aged , Plaque, Atherosclerotic/metabolism , Bone Marrow/metabolism , Integrin beta3/metabolism , Atherosclerosis/genetics , Myocytes, Smooth Muscle , Muscle, Smooth/metabolism
17.
Eur J Pediatr ; 182(4): 1897-1909, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801975

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare but severe disease temporarily related to SARS-CoV-2. We aimed to describe the epidemiological, clinical, and laboratory findings of all MIS-C cases diagnosed in children < 18 years old in Catalonia (Spain) to study their trend throughout the pandemic. This was a multicenter ambispective observational cohort study (April 2020-April 2022). Data were obtained from the COVID-19 Catalan surveillance system and from all hospitals in Catalonia. We analyzed MIS-C cases regarding SARS-CoV-2 variants for demographics, symptoms, severity, monthly MIS-C incidence, ratio between MIS-C and accumulated COVID-19 cases, and associated rate ratios (RR). Among 555,848 SARS-CoV-2 infections, 152 children were diagnosed with MIS-C. The monthly MIS-C incidence was 4.1 (95% CI: 3.4-4.8) per 1,000,000 people, and 273 (95% CI: 230-316) per 1,000,000 SARS-CoV-2 infections (i.e., one case per 3,700 SARS-CoV-2 infections). During the Omicron period, the MIS-C RR was 8.2 (95% CI: 5.7-11.7) per 1,000,000 SARS-CoV-2 infections, which was significantly lower (p < 0.001) than that for previous variant periods in all age groups. The median [IQR] age of MIS-C was 8 [4-11] years, 62.5% male, and 80.2% without comorbidities. Common symptoms were gastrointestinal findings (88.2%) and fever > 39 °C (81.6%); nearly 40% had an abnormal echocardiography, and 7% had coronary aneurysm. Clinical manifestations and laboratory data were not different throughout the variant periods (p > 0.05).  Conclusion: The RR between MIS-C cases and SARS-CoV-2 infections was significantly lower in the Omicron period for all age groups, including those not vaccinated, suggesting that the variant could be the main factor for this shift in the MISC trend. Regardless of variant type, the patients had similar phenotypes and severity throughout the pandemic. What is Known: • Before our study, only two publications investigated the incidence of MIS-C regarding SARS-CoV-2 variants in Europe, one from Southeast England and another from Denmark. What is New: • To our knowledge, this is the first study investigating MIS-C incidence in Southern Europe, with the ability to recruit all MIS-C cases in a determined area and analyze the rate ratio for MIS-C among SARS-CoV-2 infections throughout variant periods. • We found a lower rate ratio of MISC/infections with SARS-CoV-2 in the Omicron period for all age groups, including those not eligible for vaccination, suggesting that the variant could be the main factor for this shift in the MISC trend.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , Spain/epidemiology , Cohort Studies
18.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711578

ABSTRACT

The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.

19.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36626225

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.


Subject(s)
Autophagy , Idiopathic Pulmonary Fibrosis , Macrophages , MicroRNAs , Animals , Humans , Mice , Autophagy/genetics , Bleomycin/adverse effects , Homeostasis , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/metabolism , MicroRNAs/genetics , Mitochondria/metabolism
20.
Circulation ; 147(5): 388-408, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36416142

ABSTRACT

BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Atherosclerosis/pathology , Hydroxycholesterols/metabolism , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Cholesterol , Inflammation/metabolism , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...