Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2765, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808965

ABSTRACT

A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-ß1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells/cytology , Podocytes/cytology , Cells, Cultured , Humans , Mesoderm/cytology , Mesoderm/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Phenotype , Pluripotent Stem Cells/metabolism , Podocytes/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...