Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38708794

ABSTRACT

Cowpea is a highly drought-adapted leguminous crop with great promise for improving agricultural sustainability and food security. Here, we report analyses derived from array-based genotyping of 2,021 accessions constituting a core subset of the world's largest cowpea collection, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. We used this dataset to examine genetic variation and population structure in worldwide cowpea. We confirm that the primary pattern of population structure is two geographically defined subpopulations originating in West and East Africa, respectively, and that population structure is associated with shifts in phenotypic distribution. Furthermore, we establish the cowpea core collection as a resource for genome-wide association studies by mapping the genetic basis of several phenotypes, with a focus on seed coat pigmentation patterning and color. We anticipate that the genotyped IITA Cowpea Core Collection will serve as a powerful tool for mapping complex traits, facilitating the acceleration of breeding programs to enhance the resilience of this crop in the face of rapid global climate change.


Subject(s)
Genetic Variation , Genotype , Phenotype , Vigna , Vigna/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Genome, Plant , Quantitative Trait Loci , Genetics, Population
3.
Appl Plant Sci ; 11(2): e11513, 2023.
Article in English | MEDLINE | ID: mdl-37051583

ABSTRACT

Premise: The measurement of leaf morphometric parameters from digital images can be time-consuming or restrictive when using digital image analysis softwares. The Multiple Leaf Sample Extraction System (MuLES) is a new tool that enables high-throughput leaf shape analysis with minimal user input or prerequisites, such as coding knowledge or image modification. Methods and Results: MuLES uses contrasting pixel color values to distinguish between leaf objects and their background area, eliminating the need for color threshold-based methods or color correction cards typically required in other software methods. The leaf morphometric parameters measured by this software, especially leaf aspect ratio, were able to distinguish between large populations of different accessions for the same species in a high-throughput manner. Conclusions: MuLES provides a simple method for the rapid measurement of leaf morphometric parameters in large plant populations from digital images and demonstrates the ability of leaf aspect ratio to distinguish between closely related plant types.

4.
Plants (Basel) ; 12(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987033

ABSTRACT

Blueberries (Vaccinium sect. Cyanococcus) are a dietary source of phenolic acids, including chlorogenic acid (CGA) and related compounds such as acetylated caffeoylquinic acid (ACQA) and caffeoylarbutin (CA). These compounds are known to be potent antioxidants with potential health benefits. While the chemistry of these compounds has been extensively studied, the genetic analysis has lagged behind. Understanding the genetic basis for traits with potential health implications may be of great use in plant breeding. By characterizing genetic variation related to fruit chemistry, breeders can make more efficient use of plant diversity to develop new cultivars with higher concentrations of these potentially beneficial compounds. Using a large interspecific F1 population, developed from a cross between the temperate V. corymbosum var. ceasariense and the subtropical V. darrowii, with 1025 individuals genotyped using genotype-by-sequencing methods, of which 289 were phenotyped for phenolic acid content, with data collected across 2019 and 2020, we have identified loci associated with phenolic acid content. Loci for the compounds clustered on the proximal arm of Vc02, suggesting that a single gene or several closely associated genes are responsible for the biosynthesis of all four tested compounds. Within this region are multiple gene models similar to hydroxycinnamoyl CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) and UDP glucose:cinnamate glucosyl transferase (UGCT), genes known to be involved in the CGA biosynthesis pathway. Additional loci on Vc07 and Vc12 were associated with caffeoylarbutin content, suggesting a more complicated biosynthesis of that compound.

5.
Front Plant Sci ; 10: 1346, 2019.
Article in English | MEDLINE | ID: mdl-31708953

ABSTRACT

The appearance of the seed is an important aspect of consumer preference for cowpea (Vigna unguiculata [L.] Walp.). Seed coat pattern in cowpea has been a subject of study for over a century. This study makes use of newly available resources, including mapping populations, a reference genome and additional genome assemblies, and a high-density single nucleotide polymorphism genotyping platform, to map various seed coat pattern traits to three loci, concurrent with the Color Factor (C), Watson (W), and Holstein (H) factors identified previously. Several gene models encoding proteins involved in regulating the later stages of the flavonoid biosynthesis pathway have been identified as candidate genes, including a basic helix-loop-helix gene (Vigun07g110700) for the C locus, a WD-repeat gene (Vigun09g139900) for the W locus and an E3 ubiquitin ligase gene (Vigun10g163900) for the H locus. A model of seed coat development, consisting of six distinct stages, is described to explain some of the observed pattern phenotypes.

6.
G3 (Bethesda) ; 8(10): 3347-3355, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30143525

ABSTRACT

Seed coat color is an important part of consumer preferences for cowpea (Vigna unguiculata [L.] Walp). Color has been studied in numerous crop species and has often been linked to loci controlling the anthocyanin biosynthesis pathway. This study makes use of available resources, including mapping populations, a reference genome, and a high-density single nucleotide polymorphism genotyping platform, to map the black seed coat and purple pod tip color traits, with the gene symbol Bl, in cowpea. Several gene models encoding MYB domain protein 113 were identified as candidate genes. MYB domain proteins have been shown in other species to control expression of genes encoding enzymes for the final steps in the anthocyanin biosynthesis pathway. PCR analysis indicated that a presence/absence variation of one or more MYB113 genes may control the presence or absence of black pigment. A PCR marker has been developed for the MYB113 gene Vigun05g039500, a candidate gene for black seed coat color in cowpea.


Subject(s)
Genes, Plant , Pigmentation/genetics , Quantitative Trait, Heritable , Seeds/genetics , Vigna/genetics , Chromosome Mapping , Gene Amplification , Genetic Association Studies , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...