Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 5905, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625555

ABSTRACT

The two most abundant minerals in the Earth's lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover.

2.
Nat Commun ; 12(1): 2588, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976113

ABSTRACT

Hydrogen is one of the possible alloying elements in the Earth's core, but its siderophile (iron-loving) nature is debated. Here we experimentally examined the partitioning of hydrogen between molten iron and silicate melt at 30-60 gigapascals and 3100-4600 kelvin. We find that hydrogen has a metal/silicate partition coefficient DH ≥ 29 and is therefore strongly siderophile at conditions of core formation. Unless water was delivered only in the final stage of accretion, core formation scenarios suggest that 0.3-0.6 wt% H was incorporated into the core, leaving a relatively small residual H2O concentration in silicates. This amount of H explains 30-60% of the density deficit and sound velocity excess of the outer core relative to pure iron. Our results also suggest that hydrogen may be an important constituent in the metallic cores of any terrestrial planet or moon having a mass in excess of ~10% of the Earth.

3.
Orig Life Evol Biosph ; 49(3): 111-145, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31399826

ABSTRACT

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.


Subject(s)
Biology/history , Chemistry/history , Historiography , Informatics/history , Origin of Life , Paleontology/history , Philosophy/history , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Molecular Biology/history
4.
Science ; 358(6364): 734-738, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29123059

ABSTRACT

Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth's lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.

5.
Nature ; 543(7643): 99-102, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28225759

ABSTRACT

The Earth's core is about ten per cent less dense than pure iron (Fe), suggesting that it contains light elements as well as iron. Modelling of core formation at high pressure (around 40-60 gigapascals) and high temperature (about 3,500 kelvin) in a deep magma ocean predicts that both silicon (Si) and oxygen (O) are among the impurities in the liquid outer core. However, only the binary systems Fe-Si and Fe-O have been studied in detail at high pressures, and little is known about the compositional evolution of the Fe-Si-O ternary alloy under core conditions. Here we performed melting experiments on liquid Fe-Si-O alloy at core pressures in a laser-heated diamond-anvil cell. Our results demonstrate that the liquidus field of silicon dioxide (SiO2) is unexpectedly wide at the iron-rich portion of the Fe-Si-O ternary, such that an initial Fe-Si-O core crystallizes SiO2 as it cools. If crystallization proceeds on top of the core, the buoyancy released should have been more than sufficient to power core convection and a dynamo, in spite of high thermal conductivity, from as early on as the Hadean eon. SiO2 saturation also sets limits on silicon and oxygen concentrations in the present-day outer core.

6.
Astrobiology ; 15(12): 1031-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26684503

ABSTRACT

Contents 1. Introduction 1.1. A workshop and this document 1.2. Framing origins of life science 1.2.1. What do we mean by the origins of life (OoL)? 1.2.2. Defining life 1.2.3. How should we characterize approaches to OoL science? 1.2.4. One path to life or many? 2. A Strategy for Origins of Life Research 2.1. Outcomes-key questions and investigations 2.1.1. Domain 1: Theory 2.1.2. Domain 2: Practice 2.1.3. Domain 3: Process 2.1.4. Domain 4: Future studies 2.2. EON Roadmap 2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References.


Subject(s)
Interdisciplinary Communication , Natural Science Disciplines , Origin of Life , Research , Consensus , Exobiology , Life , Metabolic Networks and Pathways , Models, Theoretical , Physical Phenomena , Planets , RNA
7.
Nature ; 473(7346): 199-202, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21516105

ABSTRACT

A melt has greater volume than a silicate solid of the same composition. But this difference diminishes at high pressure, and the possibility that a melt sufficiently enriched in the heavy element iron might then become more dense than solids at the pressures in the interior of the Earth (and other terrestrial bodies) has long been a source of considerable speculation. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core-mantle boundary region. Recent theoretical calculations combined with estimates of iron partitioning between (Mg,Fe)SiO(3) perovskite and melt at shallower mantle conditions suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of shockwave experiments. Here we extend measurements of iron partitioning over the entire mantle pressure range, and find a precipitous change at pressures greater than ∼76 GPa, resulting in strong iron enrichment in melts. Additional X-ray emission spectroscopy measurements on (Mg(0.95)Fe(0.05))SiO(3) glass indicate a spin collapse around 70 GPa, suggesting that the observed change in iron partitioning could be explained by a spin crossover of iron (from high-spin to low-spin) in silicate melt. These results imply that (Mg,Fe)SiO(3) liquid becomes more dense than coexisting solid at ∼1,800 km depth in the lower mantle. Soon after the Earth's formation, the heat dissipated by accretion and internal differentiation could have produced a dense melt layer up to ∼1,000 km in thickness underneath the solid mantle. We also infer that (Mg,Fe)SiO(3) perovskite is on the liquidus at deep mantle conditions, and predict that fractional crystallization of dense magma would have evolved towards an iron-rich and silicon-poor composition, consistent with seismic inferences of structures in the core-mantle boundary region.

8.
Nature ; 463(7283): 930-3, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20164926

ABSTRACT

Except for the first 50-100 million years or so of the Earth's history, when most of the mantle may have been subjected to melting, the differentiation of Earth's silicate mantle has been controlled by solid-state convection. As the mantle upwells and decompresses across its solidus, it partially melts. These low-density melts rise to the surface and form the continental and oceanic crusts, driving the differentiation of the silicate part of the Earth. Because many trace elements, such as heat-producing U, Th and K, as well as the noble gases, preferentially partition into melts (here referred to as incompatible elements), melt extraction concentrates these elements into the crust (or atmosphere in the case of noble gases), where nearly half of the Earth's budget of these elements now resides. In contrast, the upper mantle, as sampled by mid-ocean ridge basalts, is highly depleted in incompatible elements, suggesting a complementary relationship with the crust. Mass balance arguments require that the other half of these incompatible elements be hidden in the Earth's interior. Hypotheses abound for the origin of this hidden reservoir. The most widely held view has been that this hidden reservoir represents primordial material never processed by melting or degassing. Here, we suggest that a necessary by-product of whole-mantle convection during the Earth's first billion years is deep and hot melting, resulting in the generation of dense liquids that crystallized and sank into the lower mantle. These sunken lithologies would have 'primordial' chemical signatures despite a non-primordial origin.

9.
Science ; 314(5803): 1272-6, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17124317

ABSTRACT

Temperature gradients in a low-shear-velocity province in the lowermost mantle (D'' region) beneath the central Pacific Ocean were inferred from the observation of a rapid S-wave velocity increase overlying a rapid decrease. These paired seismic discontinuities are attributed to a phase change from perovskite to post-perovskite and then back to perovskite as the temperature increases with depth. Iron enrichment could explain the occurrence of post-perovskite several hundred kilometers above the core-mantle boundary in this warm, chemically distinct province. The double phase-boundary crossing directly constrains the lowermost mantle temperature gradients. Assuming a standard but unconstrained choice of thermal conductivity, the regional core-mantle boundary heat flux (approximately 85 +/- 25 milliwatts per square meter), comparable to the average at Earth's surface, was estimated, along with a lower bound on global core-mantle boundary heat flow in the range of 13 +/- 4 terawatts. Mapped velocity-contrast variations indicate that the lens of post-perovskite minerals thins and vanishes over 1000 kilometers laterally toward the margin of the chemical distinct region as a result of a approximately 500-kelvin temperature increase.

10.
Nature ; 434(7035): 882-6, 2005 Apr 14.
Article in English | MEDLINE | ID: mdl-15829961

ABSTRACT

The thermal structure of the Earth's lowermost mantle--the D'' layer spanning depths of approximately 2,600-2,900 kilometres--is key to understanding the dynamical state and history of our planet. Earth's temperature profile (the geotherm) is mostly constrained by phase transitions, such as freezing at the inner-core boundary or changes in crystal structure within the solid mantle, that are detected as discontinuities in seismic wave speed and for which the pressure and temperature conditions can be constrained by experiment and theory. A recently discovered phase transition at pressures of the D'' layer is ideally situated to reveal the thermal structure of the lowermost mantle, where no phase transitions were previously known to exist. Here we show that a pair of seismic discontinuities observed in some regions of D'' can be explained by the same phase transition as the result of a double-crossing of the phase boundary by the geotherm at two different depths. This simple model can also explain why a seismic discontinuity is not observed in some other regions, and provides new constraints for the magnitude of temperature variations within D''.

SELECTION OF CITATIONS
SEARCH DETAIL
...