Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 868026, 2022.
Article in English | MEDLINE | ID: mdl-35873785

ABSTRACT

Background: The aim of this study was to create a simplistic taxonomy to improve transparency and consistency in, and reduce complexity of, interpreting diffusion tensor imaging (DTI) profiles in white matter disruption. Using a novel strategy of a periodic table of DTI elements, we examined if DTI profiles could demonstrate neural properties of disruption sufficient to characterize white matter changes specific for hydrocephalus vs. non-hydrocephalus, and to distinguish between cohorts of neural injury by their differing potential for reversibility. Methods: DTI datasets from three clinical cohorts representing pathological milestones from reversible to irreversible brain injury were compared to those of healthy controls at baseline, over time and with interventions. The final dataset comprised patients vs. controls in the following groupings: mild traumatic brain injury (mTBI), n = 24 vs. 27, normal pressure hydrocephalus (NPH), n = 16 vs. 9 and Alzheimer's disease (AD), n = 27 vs. 47. We generated DTI profiles from fractional anisotropy (FA) and mean, axial and radial diffusivity measures (MD, L1 and L2 and 3 respectively), and constructed an algorithm to map changes consistently to a periodic table of elements, which fully described their diffusivity and neural properties. Results: Mapping tissue signatures to a periodic table of DTI elements rapidly characterized cohorts by their differing patterns of injury. At baseline, patients with mTBI displayed the most preserved tracts. In NPH, the magnitude of changes was dependent on "familial" DTI neuroanatomy, i.e., potential for neural distortion from risk of ventriculomegaly. With time, patients with Alzheimer's disease were significantly different to controls across multiple measures. By contrast, patients with mTBI showed both loss of integrity and pathophysiological processes of neural repair. In NPH, some patterns of injury, such as "stretch/compression" and "compression" were more reversible following intervention than others; these neural profile properties suggested "microstructural resilience" to injury. Conclusion: Using the novel strategy of a periodic table of DTI elements, our study has demonstrated it is possible to distinguish between different cohorts along the spectrum of brain injury by describing neural profile properties of white matter disruption. Further work to contribute datasets of disease toward this proposed taxonomic framework would enhance the translatability of DTI profiles to the clinical-research interface.

2.
Neuroimage Clin ; 20: 531-536, 2018.
Article in English | MEDLINE | ID: mdl-30167373

ABSTRACT

Objectives: This study maps the lipid distributions based on magnetic resonance imaging (MRI) in-and opposed-phase (IOP) sequence and correlates the findings generated from lipid map to histological grading of glioma. Methods: Forty histologically proven glioma patients underwent a standard MRI tumour protocol with the addition of IOP sequence. The regions of tumour (solid enhancing, solid non-enhancing, and cystic regions) were delineated using snake model (ITK-SNAP) with reference to structural and diffusion MRI images. The lipid distribution map was constructed based on signal loss ratio (SLR) obtained from the IOP imaging. The mean SLR values of the regions were computed and compared across the different glioma grades. Results: The solid enhancing region of glioma had the highest SLR for both Grade II and III. The mean SLR of solid non-enhancing region of tumour demonstrated statistically significant difference between the WHO grades (grades II, III & IV) (mean SLRII = 0.04, mean SLRIII = 0.06, mean SLRIV = 0.08, & p < .01). A strong positive correlation was seen between WHO grades with mean SLR on lipid map of solid non-enhancing (ρ=0.68, p < .01). Conclusion: Lipid quantification via lipid map provides useful information on lipid landscape in tumour heterogeneity characterisation of glioma. This technique adds to the surgical diagnostic yield by identifying biopsy targets. It can also be used as an adjunct grading tool for glioma as well as to provide information about lipidomics landscape in glioma development.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Lipid Metabolism , Lipids , Magnetic Resonance Imaging/methods , Adolescent , Adult , Aged , Brain Neoplasms/metabolism , Child , Female , Glioma/metabolism , Humans , Lipid Metabolism/physiology , Lipids/analysis , Male , Middle Aged , Prospective Studies , Retrospective Studies , Young Adult
3.
Acad Radiol ; 25(9): 1167-1177, 2018 09.
Article in English | MEDLINE | ID: mdl-29449141

ABSTRACT

RATIONALE AND OBJECTIVES: Magnetic resonance spectroscopy is a noninvasive imaging technique that allows for reliable assessment of microscopic changes in brain cytoarchitecture, neuronal injuries, and neurochemical changes resultant from traumatic insults. We aimed to evaluate the acute alteration of neurometabolites in complicated and uncomplicated mild traumatic brain injury (mTBI) patients in comparison to control subjects using proton magnetic resonance spectroscopy (1H magnetic resonance spectroscopy). MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale. RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P < .05) between the groups. The sum of NAA and N-acetylaspartylglutamate (NAAG) also shows significant differences in both the absolute concentration (NAA + NAAG) and ratio to creatine (NAA + NAAG/Cr + PCr) between groups (χ2(2) = 4.03, P < .05and (χ2(2) = 0.79, P < .05)). NAA values were lower in cmTBI and umTBI compared to control group. A moderate weak positive correlation were found between Glasgow Coma Scale with NAA/Cr + PCr (ρ = 0.36, P < .05 and NAA + NAAG/Cr + PCr (ρ = 0.45, P < .05)), whereas a moderate correlation was seen with NAA + NAAG (ρ = 0.38, P < .05). CONCLUSION: Neurometabolite alterations were already apparent at onset of both complicated and uncomplicated traumatic brain injury. The ratio of NAA and NAAG has potential to serve as a biomarker reflecting injury severity in a quantifiable manner as it discriminates between the complicated and uncomplicated cases of mTBI.


Subject(s)
Aspartic Acid/analogs & derivatives , Brain Concussion/diagnostic imaging , Brain Concussion/metabolism , Dipeptides/metabolism , Proton Magnetic Resonance Spectroscopy , Adolescent , Adult , Aspartic Acid/metabolism , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain Concussion/complications , Case-Control Studies , Creatine/metabolism , Female , Glasgow Coma Scale , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...