Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 1): 126615, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37652323

ABSTRACT

Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.


Subject(s)
Lipase , Nanoparticles , Lipase/chemistry , Molecular Docking Simulation , Candida , Enzymes, Immobilized/chemistry , Nanoparticles/chemistry , Enzyme Stability
2.
Langmuir ; 39(34): 12004-12019, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37585874

ABSTRACT

The current study provides a comprehensive look of the adsorption process of Candida rugosa lipase (CRL) on Ca2Fe2O5 iron oxide nanoparticles (NPs). Protein-support interactions were identified across a broad range of pH and ionic strengths (mM) through a response surface methodology, surface charge determination, and spectroscopic and in silico analyses. The maximum quantity of immobilized protein was achieved at an ionic strength of 50 mM and pH 4. However, this condition did not allow for the greatest hydrolytic activity to be obtained. Indeed, it was recorded at acidic pH, but at 150 mM, where evaluation of the recovered activity revealed hyperactivation of the enzyme. These findings were supported by adsorption isotherms performed under different conditions. Based on zeta potential measurements, electrostatic interactions contributed differently to protein-support binding under the conditions tested, showing a strong correlation with experimentally determined immobilization parameters. Raman spectra revealed an increase in hydrophobicity around tryptophan residues, whereas the enzyme immobilization significantly reduced the phenylalanine signal in CRL. This suggests that this residue was involved in the interaction with Ca2Fe2O2 and molecular docking analysis confirmed these findings. Fluorescence spectroscopy showed distinct behaviors in the CRL emission patterns with the addition of Ca2Fe2O5 at pH 4 and 7. The calculated thermodynamic parameters indicated that the contact would be mediated by hydrophobic interactions at both pHs, as well as by ionic ones at pH 4. In this approach, this work adds to our understanding of the design of biocatalysts immobilized in iron oxide NPs.


Subject(s)
Candida , Candida/enzymology , Hydrogen-Ion Concentration , Lipase/metabolism , Osmolar Concentration , Enzymes, Immobilized/metabolism , Molecular Docking Simulation , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/chemistry
3.
Appl Microbiol Biotechnol ; 105(18): 6759-6778, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34458936

ABSTRACT

The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-ß-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.


Subject(s)
Bacillales , Saccharum , Endo-1,4-beta Xylanases/genetics , Hydrolysis , Oligosaccharides , Xylans
4.
Prep Biochem Biotechnol ; 51(9): 871-880, 2021.
Article in English | MEDLINE | ID: mdl-33439095

ABSTRACT

Bacillus sp. AR03 have been described as an important producer of carbohydrate-active enzymes (CAZymes) when growing in a peptone-based medium supplemented with simple sugars and/or carboxymethyl cellulose (CMC) as carbon sources. This work aimed to identify the extracellular enzymatic cocktails through shotgun proteomics. The proteomic analysis showed that enzymes involved in cellulose and xylan degradation were among the most abundant proteins. These enzymes included an endo-glucanase GH5_2 and a glucuronoxylanase GH30_8, which were found in all conditions. In addition, several proteins were differentially expressed in the three evaluated culture media, indicating microbial metabolic changes due to the different supplied carbon sources, particularly, in the presence of CMC. Finally, the capability of the crude enzymatic cocktails from culture media to degrade birchwood xylan was assessed, which produced mostly xylooligosaccharides containing among 3-5 xylose units. Consequently, this work shows the potential of the extracellular enzymes from Bacillus sp. AR03 for producing emergent prebiotics.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/metabolism , Cellulose/metabolism , Endo-1,4-beta Xylanases/metabolism , Glucuronates/metabolism , Oligosaccharides/metabolism , Secretome/enzymology , Xylans/metabolism
5.
Prep Biochem Biotechnol ; 47(6): 589-596, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28106512

ABSTRACT

The behavior of three isolates retrieved from different cellulolytic consortia, Bacillus sp. AR03, Paenibacillus sp. AR247 and Achromobacter sp. AR476-2, were examined individually and as co-cultures in order to evaluate their ability to produce extracellular cellulases and xylanases. Utilizing a peptone-based medium supplemented with carboxymethyl cellulose (CMC), an increase estimation of 1.30 and 1.50 times was obtained by the co-culture containing the strains AR03 and AR247, with respect to enzyme titles registered by their individual cultivation. On the contrary, the extracellular enzymatic production decreased during the co-cultivation of strain AR03 with the non-cellulolytic Achromobacter sp. AR476-2. The synergistic behavior observed through the combined cultivation of the strains AR03 and AR247 might be a consequence of the consumption by Paenibacillus sp. AR247 of the products of the CMC hydrolysis (i.e., cellobiose and/or cello-oligosaccharides), which were mostly generated by the cellulase producer Bacillus sp. AR03. The effect observed could be driven by the requirement to fulfill the nutritional supply from both strains on the substrate evaluated. These results would contribute to a better description of the degradation of the cellulose fraction of the plant cell walls in nature, expected to an efficient utilization of renewable sources.


Subject(s)
Achromobacter/enzymology , Bacillus/enzymology , Cellulase/metabolism , Coculture Techniques/methods , Xylosidases/metabolism , Achromobacter/growth & development , Achromobacter/metabolism , Bacillus/growth & development , Bacillus/metabolism , Carboxymethylcellulose Sodium/metabolism , Cellobiose/metabolism , Cellulose/metabolism , Industrial Microbiology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...