Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Access Microbiol ; 6(5)2024.
Article in English | MEDLINE | ID: mdl-38868372

ABSTRACT

KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.

2.
Handb Exp Pharmacol ; 279: 159-181, 2023.
Article in English | MEDLINE | ID: mdl-36598608

ABSTRACT

The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.


Subject(s)
Channelopathies , Long QT Syndrome , Humans , Channelopathies/genetics , Calcium Channels, L-Type/genetics , Long QT Syndrome/genetics , Mutation
3.
J Gen Physiol ; 154(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36167061

ABSTRACT

The first pathogenic mutation in CaV1.2 was identified in 2004 and was shown to cause a severe multisystem disorder known as Timothy syndrome (TS). The mutation was localized to the distal S6 region of the channel, a region known to play a major role in channel activation. TS patients suffer from life-threatening cardiac symptoms as well as significant neurodevelopmental deficits, including autism spectrum disorder (ASD). Since this discovery, the number and variety of mutations identified in CaV1.2 have grown tremendously, and the distal S6 regions remain a frequent locus for many of these mutations. While the majority of patients harboring these mutations exhibit cardiac symptoms that can be well explained by known pathogenic mechanisms, the same cannot be said for the ASD or neurodevelopmental phenotypes seen in some patients, indicating a gap in our understanding of the pathogenesis of CaV1.2 channelopathies. Here, we use whole-cell patch clamp, quantitative Ca2+ imaging, and single channel recordings to expand the known mechanisms underlying the pathogenesis of CaV1.2 channelopathies. Specifically, we find that mutations within the S6 region can exert independent and separable effects on activation, voltage-dependent inactivation (VDI), and Ca2+-dependent inactivation (CDI). Moreover, the mechanisms underlying the CDI effects of these mutations are varied and include altered channel opening and possible disruption of CDI transduction. Overall, these results provide a structure-function framework to conceptualize the role of S6 mutations in pathophysiology and offer insight into the biophysical defects associated with distinct clinical manifestations.


Subject(s)
Autism Spectrum Disorder , Channelopathies , Autism Spectrum Disorder/genetics , Autistic Disorder , Calcium/metabolism , Calcium Channels, L-Type/genetics , Channelopathies/genetics , Humans , Long QT Syndrome , Mutation , Syndactyly
4.
Adv Neurobiol ; 25: 259-297, 2020.
Article in English | MEDLINE | ID: mdl-32578151

ABSTRACT

Autism spectrum condition (ASC) is a complex set of behavioral and neurological responses reflecting a likely interaction between autism susceptibility genes and the environment. Autism represents a spectrum in which heterogeneous genetic backgrounds are expressed with similar heterogeneity in the affected domains of communication, social interaction, and behavior. The impact of gene-environment interactions may also account for differences in underlying neurology and wide variation in observed behaviors. For these reasons, it has been difficult for geneticists and neuroscientists to build adequate systems to model the complex neurobiology causes of autism. In addition, the development of therapeutics for individuals with autism has been painstakingly slow, with most treatment options reduced to repurposed medications developed for other neurological diseases. Adequately developing therapeutics that are sensitive to the genetic and neurobiological diversity of individuals with autism necessitates personalized models of ASC that can capture some common pathways that reflect the neurophysiological and genetic backgrounds of varying individuals. Testing cohorts of individuals with and without autism for these potentially convergent pathways on a scalable platform for therapeutic development requires large numbers of samples from a diverse population. To date, human induced pluripotent stem cells (iPSCs) represent one of the best systems for conducting these types of assays in a clinically relevant and scalable way. The discovery of the four Yamanaka transcription factors (OCT3/4, SOX2, c-Myc, and KLF4) [1] allows for the induction of iPSCs from fibroblasts [2], peripheral blood mononuclear cells (PBMCs, i.e. lymphocytes and monocytes) [3, 4], or dental pulp cells [5] that retain the original genetics of the individual from which they were derived [6], making iPSCs a powerful tool to model neurophysiological conditions. iPSCs are a readily renewable cell type that can be developed on a small scale for boutique-style proof-of-principle phenotypic studies and scaled to an industrial level for drug screening and other high-content assays. This flexibility, along with the ability to represent the true genetic diversity of autism, underscores the importance of using iPSCs to model neurophysiological aspects of ASC.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Autism Spectrum Disorder/genetics , Humans , Kruppel-Like Factor 4 , Leukocytes, Mononuclear , Organoids
5.
J Neurosci Methods ; 335: 108627, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32032714

ABSTRACT

BACKGROUND: The need for scalable high-throughput screening (HTS) approaches for 3D human stem cell platforms remains a central challenge for disease modeling and drug discovery. We have developed a workflow to screen cortical organoids across platforms. NEW METHOD: We used serum-free embryoid bodies (SFEBs) derived from human induced pluripotent stem cells (hiPSCs) and employed high-content imaging (HCI) to assess neurite outgrowth and cellular composition within SFEBs. We multiplexed this screening assay with both multi-electrode arrays (MEAs) and single-cell calcium imaging. RESULTS: HCI was used to assess the number of excitatory neurons (VGlut+) in experimental replicates of hiPSC-derived SFEBs, demonstrating experiment-to-experiment consistency. Neurite detection using HCI was applied to assess neurite morphology. MEA analysis showed that firing and burst rates in SFEBs decreased with blockade of NMDARs and AMPARs and increased with GABAR blockade. We also demonstrate effective combination of both MEA and HCI to analyze VGlut+ populations surrounding electrodes within MEAs. HCI-based (Ca2+) transient analysis revealed firing in individual cells surrounding active MEA electrodes. COMPARISON WITH EXISTING METHODS: Current methods to generate neural organoids show high degrees of variability, and often require sectioning or special handling for analysis. The protocol outlined in this manuscript generates SFEBs with high degree of consistency making them amenable to complex assays combining HTS and electrophysiology allowing for an in-depth, unbiased analysis. CONCLUSIONS: SFEBs can be used in combination with HTS to compensate for experimental variability common in 3D cultures, while significantly decreasing processing speed, making this an efficient starting point for phenotypic drug screening.


Subject(s)
Induced Pluripotent Stem Cells , Brain , High-Throughput Screening Assays , Humans , Neurons , Organoids
6.
Sci Rep ; 8(1): 17335, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478281

ABSTRACT

The primary cilium is a microtubule-enriched cell-communication organelle that participates in mechanisms controlling tissue development and maintenance, including cerebellar architecture. Centrosomal protein of 290 kDa (CEP290) is a protein important for centrosomal function and ciliogenesis. Mutations in CEP290 have been linked to a group of multi-organ disorders - termed ciliopathies. The neurophysiological deficits observed in ciliopathies are sometimes associated with the progression of autistic traits. Here, the cellular function of two rare variants of CEP290 identified from recent exome sequencing of autistic individuals are investigated. Cells expressing Cep290 carrying the missense mutation R1747Q in mouse exhibited a defective Sonic hedgehog (Shh) signalling response, mislocalisation of the Shh receptor Smoothened (Smo), and dysregulation of ciliary protein mobility, which ultimately disrupted the proliferation of cerebellar granule progenitors (CGPs). This data was furthermore corroborated in an autism patient-derived iPSC line harbouring the R1746Q rare CEP290 variant. Evidence from this study suggests that the R1746Q mutation interferes with the function of CEP290 to maintain the ciliary diffusion barrier and disrupts the integrity of the molecular composition in the primary cilium, which may contribute to alterations in neuroarchitecture.


Subject(s)
Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Cilia/metabolism , Cytoskeletal Proteins/genetics , Hedgehog Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation, Missense , Animals , Antigens, Neoplasm/metabolism , Autistic Disorder/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Cilia/pathology , Cytoskeletal Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , Patched-1 Receptor/metabolism , Signal Transduction/genetics , Smoothened Receptor/metabolism
7.
Physiol Behav ; 187: 13-19, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29101011

ABSTRACT

Understanding critical periods in brain development and how they impact adult functioning is a primary goal of neuroscience. The sexual differentiation of the brain is a unique critical period in that it is initiated by endogenous production of a critical signaling molecule in only one sex, testosterone in fetal males. Females, by contrast, do not produce testosterone but are highly responsive to it and remain sensitive to its masculinizing effects well past the close of the critical period in males. Compared to other well characterized critical periods, such as those for the visual system or barrel cortex, the masculinization of the brain is telescoped into a few short days and initiated prenatally. The slightly longer and postnatal sensitive period in females provides a valuable tool for understanding this challenging but fundamental developmental process.


Subject(s)
Brain , Critical Period, Psychological , Sex Characteristics , Animals , Brain/cytology , Brain/embryology , Brain/growth & development , Brain/metabolism , Epigenomics , Gene Expression Regulation, Developmental/physiology , Humans , Nerve Net/physiology
8.
Virology ; 501: 119-126, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27912080

ABSTRACT

Expression of Kaposi's sarcoma herpesvirus vFLIP, a potent activator of NFkB signaling, promotes latency. Inhibition of NFkB signaling promotes lytic reactivation. We previously reported that lytic inducer, RTA, inhibits vFLIP induced NFkB signaling by inducing the degradation of vFLIP via the proteasome. Here we report that the cellular ubiquitin ligase, Itch, is required for RTA induced degradation of vFLIP. Expression of either Itch targeting shRNA or a dominant negative mutant of the ubiquitin ligase both increased the stability of vFLIP in the presence of RTA. Itch potently ubiquitinated vFLIP in vivo and in vitro. We provide evidence for interaction between RTA, vFLIP and Itch and we identified an RTA resistant mutant of vFLIP that is unable to interact with Itch. These observations contribute to our understanding of how RTA counteracts the activities of vFLIP.


Subject(s)
Herpesviridae Infections/enzymology , Immediate-Early Proteins/metabolism , Repressor Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Herpesvirus 8, Human/enzymology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/genetics , Protein Binding , Proteolysis , Repressor Proteins/genetics , Trans-Activators/genetics , Ubiquitin-Protein Ligases/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...