Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 2(6): e425, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35674286

ABSTRACT

Proteomics and phosphoproteomics are robust tools to analyze dynamics of post-transcriptional processes during growth and development. A variety of experimental methods and workflows have been published, but most of them were developed for model plants and have not been adapted to high-throughput platforms. Here, we describe an experimental workflow for proteome and phosphoproteome studies tailored to cereal crop tissues. The workflow consists of two parallel parts that are suitable for analyzing protein/phosphoprotein from total proteins and the microsomal membrane fraction. We present phosphoproteomic data regarding quantification coverage and analytical reproducibility for example preparations from maize root and shoot, wheat leaf, and a microsomal protein preparation from maize leaf. To enable users to adjust for tissue specific requirements, we provide two different methods of protein clean-up: traditional ethanol precipitation (PC) and a recently developed technology termed single-pot, solid-phase-enhanced sample preparation (SP3). Both the PC and SP3 methods are effective in the removal of unwanted substances in total protein crude extracts. In addition, two different methods of phosphopeptide enrichment are presented: a TiO2 -based method and Fe(III)-NTA cartridges on a robotized platform. Although the overall number of phosphopeptides is stable across protein clean-up and phosphopeptide enrichment methods, there are differences in the preferred phosphopeptides in each enrichment method. The preferred protocol depends on laboratory capabilities and research objective. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Total protein crude extraction Basic Protocol 2: Total protein clean-up with ethanol precipitation Alternate Protocol 1: Total protein clean-up with SP3 method Basic Protocol 3: Microsomal fraction protein extraction Basic Protocol 4: Protein concentration determination by Bradford assay Basic Protocol 5: In-solution digestion with trypsin Basic Protocol 6: Phosphopeptide enrichment with TiO2 Alternate Protocol 2: Phosphopeptide enrichment with Fe(III)-NTA cartridges Basic Protocol 7: Peptide desalting with C18 material Basic Protocol 8: LC-MS/MS analysis of (phospho)peptides and spectrum matching.


Subject(s)
Phosphopeptides , Proteomics , Chromatography, Liquid/methods , Edible Grain/chemistry , Ethanol/analysis , Ferric Compounds , Phosphopeptides/analysis , Phosphorylation , Proteome/metabolism , Proteomics/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Workflow
2.
Methods Mol Biol ; 2358: 1-16, 2021.
Article in English | MEDLINE | ID: mdl-34270043

ABSTRACT

Protein phosphorylation is an important cellular regulatory mechanism affecting the activity, localization, conformation, and interaction of proteins. Protein phosphorylation is catalyzed by kinases, and thus kinases are the enzymes regulating cellular signaling cascades. In the model plant Arabidopsis, 940 genes encode for kinases. The substrate proteins of kinases are phosphorylated at defined sites, which consist of common patterns around the phosphorylation site, known as phosphorylation motifs. The discovery of kinase specificity with a preference of phosphorylation of certain motifs and application of such motifs in deducing signaling cascades helped to reveal underlying regulation mechanisms, and facilitated the prediction of kinase-target pairs. In this mini-review, we took advantage of retrieved data as examples to present the functions of kinase families along with their commonly found phosphorylation motifs from their substrates.


Subject(s)
Protein Kinases/metabolism , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Humans , Phosphorylation , Plant Proteins , Plants , Protein Kinases/genetics , Signal Transduction , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...