Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(23): 10558-10572, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30418024

ABSTRACT

The glycolytic enzyme aldolase is an emerging drug target in diseases such as cancer and protozoan infections which are dependent on a hyperglycolytic phenotype to synthesize adenosine 5'-triphosphate and metabolic precursors for biomass production. To date, structural information for the enzyme in complex with phosphate-derived inhibitors has been lacking. Thus, we determined the crystal structure of mammalian aldolase in complex with naphthalene 2,6-bisphosphate (1) that served as a template for the design of bisphosphonate-based inhibitors, namely, 2-phosphate-naphthalene 6-bisphosphonate (2), 2-naphthol 6-bisphosphonate (3), and 1-phosphate-benzene 4-bisphosphonate (4). All inhibitors targeted the active site, and the most promising lead, 2, exhibited slow-binding inhibition with an overall inhibition constant of ∼38 nM. Compound 2 inhibited proliferation of HeLa cancer cells, whereas HEK293 cells expressing a normal phenotype were not inhibited. The crystal structures delineated the essential features of high-affinity phosphate-derived inhibitors and provide a template for the development of inhibitors with prophylaxis potential.


Subject(s)
Diphosphonates/pharmacology , Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Fructose-Bisphosphate Aldolase/metabolism , Animals , Catalytic Domain , Diphosphonates/chemistry , Drug Design , Fructose-Bisphosphate Aldolase/chemistry , Glycolysis/drug effects , Models, Molecular , Rabbits
2.
J Biol Chem ; 292(48): 19849-19860, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28972169

ABSTRACT

Fructose-1,6-bisphosphate (FBP) aldolase, a glycolytic enzyme, catalyzes the reversible and stereospecific aldol addition of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (d-G3P) by an unresolved mechanism. To afford insight into the molecular determinants of FBP aldolase stereospecificity during aldol addition, a key ternary complex formed by DHAP and d-G3P, comprising 2% of the equilibrium population at physiological pH, was cryotrapped in the active site of Toxoplasma gondii aldolase crystals to high resolution. The growth of T. gondii aldolase crystals in acidic conditions enabled trapping of the ternary complex as a dominant population. The obligate 3(S)-4(R) stereochemistry at the nascent C3-C4 bond of FBP requires a si-face attack by the covalent DHAP nucleophile on the d-G3P aldehyde si-face in the active site. The cis-isomer of the d-G3P aldehyde, representing the dominant population trapped in the ternary complex, would lead to re-face attack on the aldehyde and yield tagatose 1,6-bisphosphate, a competitive inhibitor of the enzyme. We propose that unhindered rotational isomerization by the d-G3P aldehyde moiety in the ternary complex generates the active trans-isomer competent for carbonyl bond activation by active-site residues, thereby enabling si-face attack by the DHAP enamine. C-C bond formation by the cis-isomer is suppressed by hydrogen bonding of the cis-aldehyde carbonyl with the DHAP enamine phosphate dianion through a tetrahedrally coordinated water molecule. The active site geometry further suppresses C-C bond formation with the l-G3P enantiomer of d-G3P. Understanding C-C formation is of fundamental importance in biological reactions and has considerable relevance to biosynthetic reactions in organic chemistry.


Subject(s)
Fructose-Bisphosphate Aldolase/metabolism , Aldehydes/metabolism , Catalysis , Catalytic Domain , Crystallization , Enzyme Activation , Fructose-Bisphosphate Aldolase/chemistry , Protein Conformation , Stereoisomerism , Toxoplasma/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...