Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 28335-28344, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299031

ABSTRACT

Tunable light sources are a key enabling technology for many applications such as ranging, spectroscopy, optical coherence tomography, digital imaging and interferometry. For miniaturized laser devices, whispering gallery resonator lasers are a well-suited platform, offering low thresholds and small linewidths, however, many realizations suffer from the lack of reliable tuning. Rare-earth ion-doped lithium niobate offers a way to solve this issue. Here we present a single-frequency laser based on a neodymium-doped lithium niobate whispering gallery mode resonator that is tuned via the linear electro-optic effect. Using a special geometry, we suppress higher-order transverse modes and hence ensure single-mode operation. With an applied voltage of just 68 V, we achieve a tuning range of 3.5 GHz. The lasing frequency can also be modulated with a triangular control signal. The freely running system provides a frequency and power stability of better than Δ ν=20MHz and 6 %, respectively, for a 30-minute period. This concept is suitable for full integration with existing photonic platforms based on lithium niobate.

2.
Opt Express ; 29(3): 4035-4047, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770991

ABSTRACT

Nonlinear interferometers allow for mid-infrared spectroscopy with near-infrared detection using correlated photons. Previous implementations have demonstrated a spectral resolution limited by spectrally selective detection. In our work, we demonstrate mid-infrared transmission spectroscopy in a nonlinear interferometer using single-pixel near-infrared detection and Fourier-transform analysis. A sub-wavenumber spectral resolution allows for rotational-line-resolving spectroscopy of gaseous samples in a spectral bandwidth of over 700 cm-1. We use methane transmission spectra around 3.3 µm wavelength to characterize the spectral resolution, noise limitations and transmission accuracy of our device. The combination of nonlinear interferometry and Fourier-transform analysis paves the way towards performant and efficient mid-infrared spectroscopy with near-infrared detection.

3.
Opt Express ; 27(11): 15351-15358, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163732

ABSTRACT

Whispering-gallery-mode resonators made of laser-active materials can serve as efficient microphotonic coherent light sources. However, the majority of experimental realizations relies on expensive pump light sources like narrow-linewidth or pulsed laser systems, which is inappropriate for most applications. In order to overcome this, we present a whispering-gallery laser system without the need for an expensive pump light source and at the same time with unprecedented laser performance: A laser-active resonator made of Nd:YVO 4 is non-resonantly excited, employing a low-cost laser diode without any external frequency stabilization, emitting up to 100 mW optical power around 810 nm wavelength. Continuous-wave single-frequency lasing at 1064 nm wavelength is achieved with directed laser light emission in the mW-regime. The temporal power and frequency stability are within ±1.5 % and ±30 MHz, respectively. Modehop-free frequency fine-tuning is achieved exceeding 11 GHz tuning range by changing the temperature of the cavity. Faster tuning can be expected when applying geometric or electro-optic instead of thermal tuning.

4.
Opt Lett ; 43(23): 5745-5748, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30499983

ABSTRACT

Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared (NIR) regime, many applications require combs at mid-infrared (MIR), visible (VIS), or even ultra-violet (UV) wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes; however, this becomes exceedingly challenging for high-repetition-rate frequency combs. Here it is demonstrated that a synchronously driven high-Q microresonator with a second-order optical nonlinearity can efficiently convert high-repetition-rate NIR frequency combs to VIS, UV, and MIR wavelengths, providing new opportunities for microresonator and electro-optic combs in applications including molecular sensing, astronomy, and quantum optics.

5.
Opt Express ; 26(8): 10813-10819, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29716012

ABSTRACT

Lasing and self-pumped optical parametric oscillation (self-OPO) are achieved in a high-Q whispering-gallery-mode micro-resonator, made of neodymium-doped lithium niobate. A laser process providing 5 mW output power at 1.08 µm wavelength is sufficient to pump a self-OPO process within the same high-Q cavity. At 6 mW lasing output power, the sum of signal and idler output powers exceeds 1.2 mW. The wavelength of the generated light ranges from 1.5 to 3.8 µm. Phase matching is provided by a radial quasi-phase-matching structure, which is generated by a current-controlled calligraphic poling technique. To the best of our knowledge, this is the first demonstration of a quasi-phase-matched self-pumped nonlinear optical process in a micro-resonator, as well as the first self-OPO in a micro-resonator. The concept bears the potential for a highly integrated and wavelength-tunable coherent light source at low cost.

6.
Opt Lett ; 42(13): 2627-2630, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28957301

ABSTRACT

Lasing and self-frequency doubling are achieved in a millimeter-sized laser-active whispering-gallery resonator made of neodymium-doped lithium niobate. A low-cost 808-nm laser diode without external frequency stabilization is sufficient to pump the neodymium ions. Laser oscillation around 1.08 µm drives a frequency-doubling process within the same cavity providing green light. The electrical-optical efficiency of the system reaches up to 2×10-4. To the best of our knowledge, this is the first demonstration of combining lasing and χ(2) frequency conversion in a single high-Q whispering-gallery resonator. This approach is general and can be applied to other materials and other nonlinear optical processes.

7.
Sci Rep ; 7(1): 9862, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851946

ABSTRACT

Ferroelectric domain walls are interfaces between areas of a material that exhibits different directions of spontaneous polarization. The properties of domain walls can be very different from those of the undisturbed material. Metallic-like conductivity of charged domain walls (CDWs) in nominally insulating ferroelectrics was predicted in 1973 and detected recently. This important effect is still in its infancy: The electric currents are still smaller than expected, the access to the conductivity at CDWs is hampered by contact barriers, and stability is low because of sophisticated domain structures or proximity of the Curie point. Here, we report on large, accessible, and stable conductivity at CDWs in lithium niobate (LN) crystals - a vital material for photonics. Our results mark a breakthrough: Increase of conductivity at CDWs by more than 13 orders of magnitude compared to that of the bulk, access to the effect via ohmic and diode-like contacts, and high stability for temperatures T ≤ 70 °C are demonstrated. A promising and now realistic prospect is to combine CDW functionalities with linear and nonlinear optical phenomena. Our findings allow new generations of adaptive-optical elements, of electrically controlled integrated-optical chips for quantum photonics, and of advanced LN-semiconductor hybrid optoelectronic devices.

8.
Opt Express ; 23(24): 30891-903, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698722

ABSTRACT

Despite the need for isotropic optical resolution in a growing number of applications, the majority of super-resolution fluorescence microscopy setups still do not attain an axial resolution comparable to that in the lateral dimensions. Three-dimensional (3D) nanoscopy implementations that employ only a single objective lens typically feature a trade-off between axial and lateral resolution. 4Pi arrangements, in which the sample is illuminated coherently through two opposing lenses, have proven their potential for rendering the resolution isotropic. However, instrument complexity due to a large number of alignment parameters has so far thwarted the dissemination of this approach. Here, we present a 4Pi-STED setup combination, also called isoSTED nanoscope, where the STED and excitation beams are intrinsically co-aligned. A highly robust and convenient 4Pi cavity allows easy handling without the need for readjustments during imaging experiments.


Subject(s)
Image Enhancement/instrumentation , Lenses , Microscopy, Fluorescence/instrumentation , Nanotechnology/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
9.
J Am Chem Soc ; 129(46): 14362-6, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-17960905

ABSTRACT

A new approach to the deposition of Mn12 single-molecule magnet monolayers on the functionalized Au(111) surface optimized for the investigation by means of scanning tunneling spectroscopy was developed. To demonstrate this method, the new Mn12 complex [Mn12O12(O2CC6H4F)16(EtOH)4].4.4CHCl3 was synthesized and characterized. In MALDI-TOF mass spectra the isotopic distribution of the molecular ion peak of the latter complex was revealed. The complex was grafted to Au(111) surfaces via two different short conducting linker molecules. The Mn12 molecules deposited on the functionalized surface were characterized by means of scanning tunneling microscopy showing homogeneous monolayers of highest quality. Scanning tunneling spectroscopy measurements over a wider energy range compared with previous results could be performed because of the optimized Au(111) surface functionalization. Furthermore, the results substantiate the general suitability of short acidic linker molecules for the preparation of Mn12 monolayers via ligand exchange and represent a crucial step toward addressing the magnetic properties of individual Mn12 single-molecule magnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...