Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Antibiotics (Basel) ; 10(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204647

ABSTRACT

This work reports a detailed characterization of the antimicrobial profile of two trimethoprim-like molecules (compounds 1a and 1b) identified in previous studies. Both molecules displayed remarkable antimicrobial activity, particularly when combined with sulfamethoxazole. In disk diffusion assays on Petri dishes, compounds 1a and 1b showed synergistic effects with colistin. Specifically, in combinations with low concentrations of colistin, very large increases in the activities of compounds 1a and 1b were determined, as demonstrated by alterations in the kinetics of bacterial growth despite only slight changes in the fractional inhibitory concentration index. The effect of colistin may be to increase the rate of antibiotic entry while reducing efflux pump activity. Compounds 1a and 1b were susceptible to extrusion by efflux pumps, whereas the inhibitor phenylalanine arginyl ß-naphthylamide (PAßN) exerted effects similar to those of colistin. The interactions between the target enzyme (dihydrofolate reductase), the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH), and the studied molecules were explored using enzymology tools and computational chemistry. A model based on docking results is reported.

2.
Pharmaceutics ; 13(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065993

ABSTRACT

The aim of this work was to explore new therapeutic options against Chagas disease by the in vitro analysis of the biocidal activities of several tambjamine and prodiginine derivatives, against the Trypanosoma cruzi CLB strain (DTU TcVI). The compounds were initially screened against epimastigotes. The five more active compounds were assayed in intracellular forms. The tambjamine MM3 and both synthetic and natural prodigiosins displayed the highest trypanocidal profiles, with IC50 values of 4.52, 0.46, and 0.54 µM for epimastigotes and 1.9, 0.57, and 0.1 µM for trypomastigotes/amastigotes, respectively. Moreover, the combination treatment of these molecules with benznidazole showed no synergism. Finally, oxygen consumption inhibition determinations performed using high-resolution respirometry, revealed a potent effect of prodigiosin on parasite respiration (73% of inhibition at ½ IC50), suggesting that its mode of action involves the mitochondria. Moreover, its promising selectivity index (50) pointed out an interesting trypanocidal potential and highlighted the value of prodigiosin as a new candidate to fight Chagas disease.

3.
Article in English | MEDLINE | ID: mdl-31210760

ABSTRACT

BACKGROUND: This work aimed to explore the action of natural prodigiosin on both bacterial organisms and Trypanosoma cruzi cells. METHODS: Natural prodigiosin pigment was extracted and purified from cultures of Serratia marcescens. Two media, peanut broth and peptone glycerol broth, both recommended in the literature for prodigiosin production, were compared. The prodigiosin obtained was employed to explore its antimicrobial properties against both bacteria and Trypanosoma cruzi cells. RESULTS: Peanut broth yielded four times more prodigiosin. The prodigiosin showed remarkable activity (minimal inhibitory concentrations in the range of 2-8 µM for bacteria and half maximal inhibitory concentration of 0.6 µM for Trypanosoma cruzi). In fact, the prodigiosin concentration required to inhibit parasite growth was as low as 0.25 mg/l versus 4.9 mg/l of benznidazole required. Furthermore, atomic force microscopy revealed marked morphological alterations in treated epimastigote forms, although no pore-formation activity was detected in protein-free environments. CONCLUSIONS: This work demonstrates the potential usefulness of prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi although further studies must be done in order to assess its value as a candidate molecule.

4.
J. venom. anim. toxins incl. trop. dis ; 25: e20190001, 2019. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1012636

ABSTRACT

This work aimed to explore the action of natural prodigiosin on both bacterial organisms and Trypanosoma cruzi cells. Methods: Natural prodigiosin pigment was extracted and purified from cultures of Serratia marcescens. Two media, peanut broth and peptone glycerol broth, both recommended in the literature for prodigiosin production, were compared. The prodigiosin obtained was employed to explore its antimicrobial properties against both bacteria and Trypanosoma cruzi cells. Results: Peanut broth yielded four times more prodigiosin. The prodigiosin showed remarkable activity (minimal inhibitory concentrations in the range of 2-8 µM for bacteria and half maximal inhibitory concentration of 0.6 µM for Trypanosoma cruzi). In fact, the prodigiosin concentration required to inhibit parasite growth was as low as 0.25 mg/l versus 4.9 mg/l of benznidazole required. Furthermore, atomic force microscopy revealed marked morphological alterations in treated epimastigote forms, although no pore-formation activity was detected in protein-free environments. Conclusions: This work demonstrates the potential usefulness of prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi although further studies must be done in order to assess its value as a candidate molecule.(AU)


Subject(s)
Animals , Prodigiosin/therapeutic use , Trypanosoma cruzi , Chagas Disease , Gram-Negative Bacteria
5.
Am J Trop Med Hyg ; 97(5): 1469-1476, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29016287

ABSTRACT

This article describes the characterization of various encapsulated formulations of benznidazole, the current first-line drug for the treatment of Chagas disease. Given the adverse effects of benznidazole, safer formulations of this drug have a great interest. In fact, treatment of Chagas disease with benznidazole has to be discontinued in as much as 20% of cases due to side effects. Furthermore, modification of delivery and formulations could have potential effects on the emergence of drug resistance. The trypanocidal activity of new nanostructured formulations of benznidazole to eliminate Trypanosoma cruzi was studied in vitro as well as their toxicity in two cultured mammalian cell lines (HepG2 and Fibroblasts). Nanoparticles tested included nanostructured lipid carriers, solid lipid nanoparticles, liposomes, quatsomes, and cyclodextrins. The in vitro cytotoxicity of cyclodextrins-benznidazole complexes was significantly lower than that of free benznidazole, whereas their trypanocidal activity was not hampered. These results suggest that nanostructured particles may offer improved therapeutics for Chagas disease.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Nitroimidazoles/chemistry , Nitroimidazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Chagas Disease/drug therapy , Chemical Phenomena , Cyclodextrins/chemistry , Fibroblasts/drug effects , Hep G2 Cells , Humans , Liposomes/chemistry , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...