Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37776364

ABSTRACT

BACKGROUND: Genomes are powerful resources to understand the evolutionary mechanisms underpinning the origin and diversification of the venoms of cone snails (Conidae: Caenogastropoda) and could aid in the development of novel drugs. FINDINGS: Here, we used PacBio continuous long reads and Omni-C data to assemble the chromosome-level genome of Kalloconus canariensis, a vermivorous cone endemic to the Canary Islands. The final genome size was 2.87 Gb, with a N50 of 79.75 Mb and 91% of the reads located into the 35 largest scaffolds. Up to 55.80% of the genome was annotated as repetitive regions, being class I of transposable elements (16.65%) predominant. The annotation estimated 34,287 gene models. Comparative analysis of this genome with the 2 cone snail genomes released to date (Dendroconus betulinus and Lautoconus ventricosus) revealed similar genome sizes and organization, although chromosome sizes tended to be shorter in K. canariensis. Phylogenetic relationships within subclass Caenogastropoda were recovered with strong statistical support. The family Conidae was recovered as a clade, with K. canariensis plus L. ventricosus sister to D. betulinus. CONCLUSIONS: Despite the great diversity of cone snails (>900 species) and their venoms (hundreds of peptides per species), only 2 recently reported genomes are available for the group. The high-quality chromosome-level assembly of K. canariensis will be a valuable reference for studying the origin and evolution of conotoxin genes as well as whole-genome duplication events during gastropod evolution.


Subject(s)
Genomics , Venoms , Animals , Phylogeny , Chromosomes/genetics , Snails/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...