Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 130(10): 1358-68, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16172660

ABSTRACT

Electrochemically controlled solid-phase extractions of anions were interfaced on-line to electrospray mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS), using polypyrrole coated electrodes and a thin-layer electrochemical (EC) flow cell. The results indicate that electrochemically controlled solid-phase extraction (EC-SPE) can be used as a versatile potential controlled sample preparation technique for a range of anions and that the properties of the polypyrrole coatings can be modified by altering the electrodeposition conditions. In the present study, the influence of interfering anions (i.e., fluoride and sulfate), and the anion used during the electropolymerisation, on the bromide extraction recovery was investigated for EC-SPE interfaced to ICP-MS. The results of these experiments show that the interference due to the presence of similar concentrations of sulfate can be reduced when using a polypyrrole coating electropolymerised in the presence of bromide ions. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements were also used to study the morphology of the coatings, as well as the variations in the film thickness within the coatings. The effect of different desorption techniques on the bromide preconcentration factor in the ICP-MS on-line flow system was also examined. Stopped-flow desorption was found to give rise to significantly increased preconcentration factors in comparison with desorptions in flowing solutions. While the desorption efficiency depends on the type of desorption electrolyte (the electrolyte in which the desorption takes place), due to the competing influx of cations, the influence of the pH on the switching charge of the polypyrrole coating was found to be small, at constant ionic strength. To study the applicability of the EC-SPE technique with respect to real samples, investigations were also made with tap water samples spiked with different bromide concentrations. The results of these experiments, which were carried out using a modified thin-layer EC flow cell allowing in situ polymerisation of polypyrrole yielding a polymer plug covering the cross section of the channel, demonstrate that 3 microM concentrations of bromide could be detected in the tap water sample. This demonstrates that the extraction technique allows extractions of low concentrations of ions in the presence of significantly higher concentrations of other similar ions. The fact that the extraction and desorption steps are electrochemically controlled makes EC-SPE particularly well suited for inclusion in miniaturised lab-on-a-chip systems.


Subject(s)
Bromides/analysis , Water Pollutants, Chemical/analysis , Flow Injection Analysis/instrumentation , Flow Injection Analysis/methods , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polymers/analysis , Pyrroles/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Surface Properties , Water Supply
2.
Biomacromolecules ; 6(3): 1353-9, 2005.
Article in English | MEDLINE | ID: mdl-15877352

ABSTRACT

We have used a novel polyelectrolyte multilayer (PEM) coating consisting of the polyelectrolytes collagen and hyaluronic acid. The build-up by the layer-by-layer deposition technique is outlined by ex situ and in situ ellipsometric measurements. When collagen was added, the thickness of the PEM was increased, and the refractive index was decreased. Corresponding but opposite effects were noted when hyaluronic acid was added. These changes are considered to be explained by a diffusion mechanism. It was also found that the PEM layers were unstable at physiological pH. However, by cross-linking using N-(3-di-methylaminopropyl)-N'-ethylcarbodiimide together with N-hydroxysuccinimide, a stable PEM layer resulted. These tissue friendly PEM layers are expected to have a great impact in the design of artificial extracellular matrixes. Also, the insertion of fluorescence labels demonstrates the potential for incorporation of other functionalities.


Subject(s)
Collagen/chemical synthesis , Hyaluronic Acid/chemical synthesis , Polymers/chemical synthesis , Electrolytes
SELECTION OF CITATIONS
SEARCH DETAIL
...