Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2737-2740, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268885

ABSTRACT

We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.


Subject(s)
Computer Simulation , Heart/physiology , Lung/physiology , Models, Biological , Pulmonary Circulation/physiology , Animals , Capillaries , Gravitation , Hemodynamics , Humans
2.
J Biomed Biotechnol ; 2012: 657942, 2012.
Article in English | MEDLINE | ID: mdl-22500103

ABSTRACT

EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [(35)S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.


Subject(s)
Adhesins, Bacterial/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Entamoeba histolytica/metabolism , Protozoan Proteins/chemistry , Adhesins, Bacterial/chemistry , Calcium-Binding Proteins/chemistry , Cell Cycle Proteins/chemistry , Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Histocytochemistry , Humans , Models, Molecular , Phagocytosis/physiology , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trophozoites/metabolism
3.
J Biomed Biotechnol ; 2010: 890674, 2010.
Article in English | MEDLINE | ID: mdl-20508821

ABSTRACT

Eukaryotic endocytosis involves multivesicular bodies formation, which is driven by endosomal sorting complexes required for transport (ESCRT). Here, we showed the presence and expression of homologous ESCRT genes in Entamoeba histolytica. We cloned and expressed the Ehvps4 gene, an ESCRT member, to obtain the recombinant EhVps4 and generate specific antibodies, which immunodetected EhVps4 in cytoplasm of trophozoites. Bioinformatics and biochemical studies evidenced that rEhVps4 is an ATPase, whose activity depends on the conserved E211 residue. Next, we generated trophozoites overexpressing EhVps4 and mutant EhVps4-E211Q FLAG-tagged proteins. The EhVps4-FLAG was located in cytosol and at plasma membrane, whereas the EhVps4-E211Q-FLAG was detected as abundant cytoplasmic dots in trophozoites. Erythrophagocytosis, cytopathic activity, and hepatic damage in hamsters were not improved in trophozoites overexpressing EhVps4-FLAG. In contrast, EhVps4-E211Q-FLAG protein overexpression impaired these properties. The localization of EhVps4-FLAG around ingested erythrocytes, together with our previous results, strengthens the role for EhVps4 in E. histolytica phagocytosis and virulence.

4.
Mol Cell Biol ; 30(4): 897-907, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20028738

ABSTRACT

Mammalian arrestins have a major role in the intracellular trafficking of seven-transmembrane (7TM) receptors. The fungal ambient pH signaling pathway involves an arrestin-related protein, PalF/Rim8, and the ESCRT (endosomal sorting complex required for transport) machinery. We found that in Saccharomyces cerevisiae, Rim8 binds to both the putative 7TM pH sensor Rim21 and the ESCRT-I subunit Vps23. We show that an SXP motif in Rim8 mediates binding to the Vps23 ubiquitin E2 variant (UEV) domain and that a monoubiquitinated residue near the SXP motif contributes to this interaction. We present evidence that Rim8 ubiquitination is dependent on the Rsp5 E3 ubiquitin ligase and triggered upon binding of Vps23 UEV to both the SXP motif and ubiquitin, thus suggesting a two-step binding mechanism. We further show that Rim8 coimmunoprecipitates with ESCRT-I subunits Vps23 and Vps28, supporting the idea that binding of Rim8 to Vps23 mediates the association of Rim8 with the ESCRT-I complex. Fluorescence microscopic analyses indicate that overexpressed Rim8 and Vps23 colocalize at cortical punctate structures, providing additional evidence of the interaction between these two proteins. Strikingly, our findings indicate that evolutionary conserved mechanisms control the recruitment of the ESCRT machinery to Pal/Rim proteins in fungi and retroviral Gag proteins in animal cells.


Subject(s)
Arrestin/metabolism , Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Cell Cycle Proteins , Conserved Sequence , Endosomal Sorting Complexes Required for Transport/genetics , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Molecular Sequence Data , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, Cell Surface/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Ubiquitination
5.
Proc Natl Acad Sci U S A ; 102(34): 12141-6, 2005 Aug 23.
Article in English | MEDLINE | ID: mdl-16099830

ABSTRACT

Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.


Subject(s)
Arrestins/metabolism , Aspergillus nidulans/genetics , Fungal Proteins/metabolism , Signal Transduction/genetics , Amino Acid Sequence , Arrestins/genetics , DNA Mutational Analysis , Epistasis, Genetic , Glutathione Transferase , Hydrogen-Ion Concentration , Immunoblotting , Molecular Sequence Data , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Two-Hybrid System Techniques , Ubiquitins
SELECTION OF CITATIONS
SEARCH DETAIL
...