Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Science ; 383(6681): eadd1417, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271521

ABSTRACT

The distribution of fitness effects of new mutations shapes evolution, but it is challenging to observe how it changes as organisms adapt. Using Escherichia coli lineages spanning 50,000 generations of evolution, we quantify the fitness effects of insertion mutations in every gene. Macroscopically, the fraction of deleterious mutations changed little over time whereas the beneficial tail declined sharply, approaching an exponential distribution. Microscopically, changes in individual gene essentiality and deleterious effects often occurred in parallel; altered essentiality is only partly explained by structural variation. The identity and effect sizes of beneficial mutations changed rapidly over time, but many targets of selection remained predictable because of the importance of loss-of-function mutations. Taken together, these results reveal the dynamic-but statistically predictable-nature of mutational fitness effects.


Subject(s)
Escherichia coli , Evolution, Molecular , Genetic Fitness , Adaptation, Physiological/genetics , Escherichia coli/genetics , Mutagenesis, Insertional , Mutation , Selection, Genetic
2.
ISME J ; 16(7): 1843-1852, 2022 07.
Article in English | MEDLINE | ID: mdl-35422477

ABSTRACT

Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically, we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance costs should select for the rapid gain and loss of resistance as an evolutionary strategy.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli , Anti-Bacterial Agents/pharmacology , Bacteria , Biological Evolution , Chloramphenicol , Drug Resistance, Bacterial/genetics , Mutation
3.
SSRN ; : 3570206, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32714111

ABSTRACT

In the absence of vaccines or therapeutics, and with cases of COVID-19 continuing to grow each day, most countries are relying on non-pharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2. The goal of NPIs - decreasing mobility in order to decrease contact - comes with competing socioeconomic costs and incentives that are not well-understood. Using Google's Community Mobility data, we visualized changes in mobility and explored the effect of economic, social, and governmental factors on mobility via regression. We found decreases in mobility for all movement categories except in residential areas; these changes corresponded strongly with country-specific outbreak trajectory. Mobility increased with GDP per capita, though this relationship varied among movement categories. Finally, countries with more authoritarian governments were more responsive with respect to mobility changes as local case counts increased; however, these countries were also less likely to report mobility data to Google. These preliminary findings suggest that country-specific outbreak trajectory, GDP per capita, and democracy index may be important indicators in assessing a given population's adherence to NPIs.

4.
Proc Biol Sci ; 287(1927): 20192945, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32396806

ABSTRACT

The strength of biotic interactions within an ecological community affects the susceptibility of the community to invasion by introduced taxa. In microbial communities, cross-feeding is a widespread type of biotic interaction that has the potential to affect community assembly and stability. Yet, there is little understanding of how the presence of cross-feeding within a community affects invasion risk. Here, I develop a metabolite-explicit model where native microbial taxa interact through both cross-feeding and competition for metabolites. I use this model to study how the strength of biotic interactions, especially cross-feeding, influence whether an introduced taxon can join the community. I found that stronger cross-feeding and competition led to much lower invasion risk, as both types of biotic interactions lead to greater metabolite scarcity for the invader. I also evaluated the impact of a successful invader on community composition and structure. The effect of invaders on the native community was greatest at intermediate levels of cross-feeding; at this 'critical' level of cross-feeding, successful invaders generally cause decreased diversity, decreased productivity, greater metabolite availability, and decreased quantities of metabolites exchanged among taxa. Furthermore, these changes resulting from a successful primary invader made communities further susceptible to future invaders. The increase in invasion risk was greatest when the network of metabolite exchange between taxa was minimally redundant. Thus, this model demonstrates a case of invasional meltdown that is mediated by initial invaders disrupting the metabolite exchange networks of the native community.


Subject(s)
Ecosystem , Introduced Species , Microbiota , Biota
5.
Appl Environ Microbiol ; 85(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31126951

ABSTRACT

Recent studies evaluating the community structures of microorganisms and macroorganisms have found greater diversity and rarity within micro-scale communities, compared to macro-scale communities. However, reproductive method has been a confounding factor in these comparisons; the microbes considered generally reproduce asexually, while the macroorganisms considered generally reproduce sexually. Sexual reproduction imposes the constraint of mate finding, which can have significant demographic consequences by depressing birth rates at low population sizes. First, I construct an island biogeography model to study the organization of ecological communities under neutral stochastic processes. Then, I examine theoretically how the effects of mate finding in sexual populations translate to the emergent community properties of diversity, rarity, and dominance (size of the largest population). In mate-limited sexual populations, the decreased growth rates at low population densities translate to a higher extinction rate; this increased extinction rate had a disproportionately strong effect on taxa with low population densities. Thus, mate limitation decreased diversity, primarily by excluding small populations from communities. However, the most abundant taxa were minimally affected by mate limitation. Therefore, mate limitation affected the diversity and rarity of taxa in communities but did not alter the dominance of the largest population. The observed shifts in community structure mirror recent empirical studies of micro-scale versus macro-scale communities, which have shown that microbial communities have greater diversity and rarity than macrobial communities but are not different in dominance. Thus, reproductive method may contribute to observed differences in emergent properties between communities at these two scales.IMPORTANCE There have been numerous recent efforts to integrate microbes into broad-scale ecological theories. Microbial communities are often structurally distinct from macrobial communities, but it is unclear whether these differences are real or whether they are due to the different methodologies used to study communities at these two scales. One major difference between macroorganisms and microorganisms is that microbes are much more likely to reproduce asexually. Sexually reproducing taxa have diminished growth rates at low population size, because they must encounter another member of their species before reproducing. This study shows that communities of asexually reproducing taxa are expected to be more diverse, because taxa persist longer. Furthermore, asexually reproducing taxa can exist at much lower densities than sexually reproducing taxa. Thus, asexual reproduction by microbes can account for two major differences between microbial and macrobial communities, namely, greater diversity and greater prevalence of rare taxa for microbes.


Subject(s)
Microbiota , Reproduction, Asexual , Models, Biological , Population Density
6.
Environ Microbiol ; 20(6): 2207-2217, 2018 06.
Article in English | MEDLINE | ID: mdl-29708645

ABSTRACT

The influence of biotic interactions on microbial community assembly is intensely debated. We hypothesized that keystone taxa, which influence community assembly through strong biotic interactions, are important for regulating microbial community composition. While highly connected microbes have been identified, evidence that these taxa act as keystones is lacking, because keystone status requires influence on whole-community dynamics. We address this gap, showing that small subsets of highly connected keystone taxa (generally 1%-5% of richness) can be optimal predictors of whole-community compositional change. In three long-term data sets, greater connectivity due to the presence of keystone taxa corresponded to lower compositional turnover. We further hypothesized that the influence of keystone taxa would be diminished when environmental disturbance was a strong driver of compositional change. We used two case studies of reference and disturbed communities to investigate how biotic and abiotic forces interact to shape community composition. Most of the same taxa were present in both the reference and disturbed communities, but keystone taxa had much greater explanatory power in the reference communities. Our results suggest that greater biotic connectivity arising from the presence of keystone taxa is stabilizing to community composition, and that keystone taxa can be good indicators of pending community shifts.


Subject(s)
Biodiversity , Environment , Microbiota
7.
ISME J ; 11(11): 2426-2438, 2017 11.
Article in English | MEDLINE | ID: mdl-28731477

ABSTRACT

The ability to predict microbial community dynamics lags behind the quantity of data available in these systems. Most predictive models use only environmental parameters, although a long history of ecological literature suggests that community complexity should also be an informative parameter. Thus, we hypothesize that incorporating information about a community's complexity might improve predictive power in microbial models. Here, we present a new metric, called community 'cohesion,' that quantifies the degree of connectivity of a microbial community. We analyze six long-term (10+ years) microbial data sets using the cohesion metrics and validate our approach using data sets where absolute abundances of taxa are available. As a case study of our metrics' utility, we show that community cohesion is a strong predictor of Bray-Curtis dissimilarity (R2=0.47) between phytoplankton communities in Lake Mendota, WI, USA. Our cohesion metrics outperform a model built using all available environmental data collected during a long-term sampling program. The result that cohesion corresponds strongly to Bray-Curtis dissimilarity is consistent across the six long-term time series, including five phytoplankton data sets and one bacterial 16S rRNA gene sequencing data set. We explain here the calculation of our cohesion metrics and their potential uses in microbial ecology.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Classification/methods , Lakes/microbiology , Bacteria/genetics , Ecology , Phytoplankton/classification , Phytoplankton/genetics , Phytoplankton/isolation & purification , RNA, Ribosomal, 16S/genetics
8.
Ecology ; 98(2): 447-455, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27861769

ABSTRACT

The chironomids of Lake Mývatn show extreme population fluctuations that affect most aspects of the lake ecosystem. During periods of high chironomid densities, chironomid larvae comprise over 90% of aquatic secondary production. Here, we show that chironomid larvae substantially stimulate benthic gross primary production (GPP) and net primary production (NPP), despite consuming benthic algae. Benthic GPP in experimental mesocosms with 140,000 larvae/m2 was 71% higher than in mesocosms with no larvae. Similarly, chlorophyll a concentrations in mesocosms increased significantly over the range of larval densities. Furthermore, larvae showed increased growth rates at higher densities, possibly due to greater benthic algal availability in these treatments. We investigated the hypothesis that larvae promote benthic algal growth by alleviating nutrient limitation, and found that (1) larvae have the potential to cycle the entire yearly external loadings of nitrogen and phosphorus during the growing season, and (2) chlorophyll a concentrations were significantly greater in close proximity to larvae (on larval tubes). The positive feedback between chironomid larvae and benthic algae generated a net mutualism between the primary consumer and primary producer trophic levels in the benthic ecosystem. Thus, our results give an example in which unexpected positive feedbacks can lead to both high primary and high secondary production.


Subject(s)
Chironomidae/physiology , Microalgae/physiology , Symbiosis , Animals , Chlorophyll , Chlorophyll A , Ecosystem , Lakes
9.
mSystems ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27822539

ABSTRACT

A central pursuit of microbial ecology is to accurately model changes in microbial community composition in response to environmental factors. This goal requires a thorough understanding of the drivers of variability in microbial populations. However, most microbial ecology studies focus on the effects of environmental factors on mean population abundances, rather than on population variability. Here, we imposed several experimental disturbances upon periphyton communities and analyzed the variability of populations within disturbed communities compared with those in undisturbed communities. We analyzed both the bacterial and the diatom communities in the periphyton under nine different disturbance regimes, including regimes that contained multiple disturbances. We found several similarities in the responses of the two communities to disturbance; all significant treatment effects showed that populations became less variable as the result of environmental disturbances. Furthermore, multiple disturbances to these communities were often interactive, meaning that the effects of two disturbances could not have been predicted from studying single disturbances in isolation. These results suggest that environmental factors had repeatable effects on populations within microbial communities, thereby creating communities that were more similar as a result of disturbances. These experiments add to the predictive framework of microbial ecology by quantifying variability in microbial populations and by demonstrating that disturbances can place consistent constraints on the abundance of microbial populations. Although models will never be fully predictive due to stochastic forces, these results indicate that environmental stressors may increase the ability of models to capture microbial community dynamics because of their consistent effects on microbial populations. IMPORTANCE There are many reasons why microbial community composition is difficult to model. For example, the high diversity and high rate of change of these communities make it challenging to identify causes of community turnover. Furthermore, the processes that shape community composition can be either deterministic, which cause communities to converge upon similar compositions, or stochastic, which increase variability in community composition. However, modeling microbial community composition is possible only if microbes show repeatable responses to extrinsic forcing. In this study, we hypothesized that environmental stress acts as a deterministic force that shapes microbial community composition. Other studies have investigated if disturbances can alter microbial community composition, but relatively few studies ask about the repeatability of the effects of disturbances. Mechanistic models implicitly assume that communities show consistent responses to stressors; here, we define and quantify microbial variability to test this assumption. Author Video: An author video summary of this article is available.

10.
Ecology ; 95(8): 2246-56, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25230475

ABSTRACT

"Enemy release" occurs when invading species suffer from interactions with pathogens, parasites, herbivores, or predators to a lesser degree than native species due to a lack of shared evolutionary history. Here we provide strong support for the hypothesis that variable thermal sensitivities between a consumer and its resources can generate temperature-dependent enemy release using both a mathematical model and a field experiment. We identify three common scenarios where changes in temperature should alter enemy release based on asymmetric responses among enemies and their resources to changes in temperature: (1) the vital rates of a shared enemy are more sensitive to changes in temperature than its resources, (2) the enemy's thermal maximum for consumption is higher than the resources' maxima for growth, and (3) the invading resource has a higher thermal maximum for growth than its native competitor. Mathematical representations indicated that warming is capable of altering enemy release in each of these three scenarios. We also tested our hypothesis using a mesocosm warming experiment in a system that exhibits variable thermal sensitivities between a predator and its native and nonnative prey. We conducted a six-week experiment manipulating the presence of Lepomis sunfish (present, absent) and water temperature (ambient, heated) using the nonnative crustacean zooplankter, Daphnia lumholtzi, whose morphological defenses reduce predation from juvenile sunfish relative to native Daphnia pulex. Our results indicate that D. lumholtzi benefited to a greater extent from the presence of Lepomis predators as temperatures increase. Taken together, our model and experiment indicate that changes in environmental temperature may directly influence the success of nonnative species and may assist with forecasting the community consequences of biological invasions in a warming world.


Subject(s)
Daphnia/physiology , Ecosystem , Hot Temperature , Models, Biological , Predatory Behavior , Animals , Introduced Species , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...