Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R97-R108, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38780425

ABSTRACT

The transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle. Force was measured in isolated strips of mouse urinary bladder with the urothelium intact or denuded. Bladder strips developed spontaneous tone and phasic contractions. In urothelium-intact strips, basal tone, as well as the frequency and amplitude of phasic contractions, were 25%, 32%, and 338% higher than in urothelium-denuded strips, respectively. Basal tone and phasic contractility in urothelium-intact bladder strips were abolished by the cyclooxygenase (COX) inhibitor indomethacin (10 µM) or the voltage-dependent Ca2+ channel blocker diltiazem (50 µM), whereas blocking neuronal sodium channels with tetrodotoxin (1 µM) had no effect. These results suggest that prostanoids produced in the urothelium enhance smooth muscle tone and phasic contractions by activating voltage-dependent Ca2+ channels in the underlying bladder smooth muscle. We went on to demonstrate that blocking COX inhibits the generation of transient pressure events in isolated pressurized bladders and greatly attenuates the afferent nerve activity during bladder filling, suggesting that urothelial prostanoids may also play a role in sensory nerve signaling.NEW & NOTEWORTHY This paper provides evidence for the role of urothelial-derived prostanoids in maintaining tone in the urinary bladder during bladder filling, not only underscoring the role of the urothelium as more than a barrier but also contributing to active regulation of the urinary bladder. Furthermore, cyclooxygenase products greatly augment sensory nerve activity generated by bladder afferents during bladder filling and thus may play a role in perception of bladder fullness.


Subject(s)
Mice, Inbred C57BL , Muscle Contraction , Muscle, Smooth , Prostaglandins , Urinary Bladder , Urothelium , Animals , Urinary Bladder/innervation , Urinary Bladder/physiology , Urinary Bladder/drug effects , Urothelium/innervation , Urothelium/drug effects , Urothelium/metabolism , Urothelium/physiology , Muscle Contraction/drug effects , Prostaglandins/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/innervation , Muscle, Smooth/physiology , Muscle, Smooth/metabolism , Mice , Male , Neurons, Afferent/physiology , Neurons, Afferent/drug effects , Neurons, Afferent/metabolism , Cyclooxygenase Inhibitors/pharmacology , Female
2.
Biomech Model Mechanobiol ; 22(5): 1685-1695, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37249760

ABSTRACT

Optimal bladder compliance is essential to urinary bladder storage and voiding functions. Calculated as the change in filling volume per change in pressure, bladder compliance is used clinically to characterize changes in bladder wall biomechanical properties that associate with lower urinary tract dysfunction. But because this method calculates compliance without regard to wall structure or wall volume, it gives little insight into the mechanical properties of the bladder wall during filling. Thus, we developed Pentaplanar Reflected Image Macroscopy (PRIM): a novel ex vivo imaging method to accurately calculate bladder wall stress and stretch in real time during bladder filling. The PRIM system simultaneously records intravesical pressure, infused volume, and an image of the bladder in five distinct visual planes. Wall thickness and volume were then measured and used to calculate stress and stretch during filling. As predicted, wall stress was nonlinear; only when intravesical pressure exceeded ~ 15 mmHg did bladder wall stress rapidly increase with respect to stretch. This method of calculating compliance as stress vs stretch also showed that the mechanical properties of the bladder wall remain similar in bladders of varying capacity. This study demonstrates how wall tension, stress and stretch can be measured, quantified, and used to accurately define bladder wall biomechanics in terms of actual material properties and not pressure/volume changes. This method is especially useful for determining how changes in bladder biomechanics are altered in pathologies where profound bladder wall remodeling occurs, such as diabetes and spinal cord injury.


Subject(s)
Pelvis , Urinary Bladder , Biomechanical Phenomena , Compliance
3.
Sci Rep ; 13(1): 625, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635439

ABSTRACT

A balance between stiffness and compliance is essential to normal bladder function, and changes in the mechanical properties of the bladder wall occur in many bladder pathologies. These changes are often associated with the release of basic secretagogues that in turn drive the release of inflammatory mediators from mast cells. Mast cell degranulation by basic secretagogues is thought to occur by activating an orphan receptor, Mas-related G protein-coupled receptor B2 (Mrgprb2). We explored the effects of the putative mast cell degranulator and Mrgprb2 agonist Compound 48/80 on urinary bladder wall mechanical compliance, smooth muscle contractility, and urodynamics, and if these effects were mast cell dependent. In wild-type mice, Mrgprb2 receptor mRNA was expressed in both the urothelium and smooth muscle layers. Intravesical instillation of Compound 48/80 decreased intermicturition interval and void volume, indicative of bladder overactivity. Compound 48/80 also increased bladder compliance while simultaneously increasing the amplitude and leading slope of transient pressure events during ex vivo filling and these effects were inhibited by the Mrgprb2 antagonist QWF. Surprisingly, all effects of Compound 48/80 persisted in mast cell-deficient mice, suggesting these effects were independent of mast cells. These findings suggest that Compound 48/80 degrades extracellular matrix and increases urinary bladder smooth muscle excitability through activation of Mrgprb2 receptors located outside of mast cells. Thus, the pharmacology and physiology of Mrgprb2 in the urinary bladder is of potential interest and importance in terms of treating lower urinary tract dysfunction.


Subject(s)
Mast Cells , Urinary Bladder , Mice , Animals , Urinary Bladder/metabolism , Mast Cells/metabolism , p-Methoxy-N-methylphenethylamine/pharmacology , Secretagogues/pharmacology , Receptors, G-Protein-Coupled/metabolism
4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R682-R693, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121145

ABSTRACT

Storage and voiding functions in urinary bladder are well-known, yet fundamental physiological events coordinating these behaviors remain elusive. We sought to understand how voiding function is influenced by the rate at which the bladder fills. We hypothesized that faster filling rates would increase afferent sensory activity and increase micturition rate. In vivo, this would mean animals experiencing faster bladder filling would void more frequently with smaller void volumes. To test this hypothesis, we measured afferent nerve activity during different filling rates using an ex vivo mouse bladder preparation and assessed voiding frequency in normally behaving mice noninvasively (UroVoid). Bladder afferent nerve activity depended on the filling rate, with faster filling increasing afferent nerve activity at a given volume. Voiding behavior in vivo was measured in UroVoid cages. Male and female mice were given access to tap water or, to induce faster bladder filling rates, water containing 5% sucrose. Fluid intake increased dramatically in mice consuming 5% sucrose. As expected, micturition frequency was elevated in the sucrose group. However, even with the greatly increased rate of urine production, void volumes were unchanged in both genders. Although faster filling rates generated higher afferent nerve rates ex vivo, this did not translate into more frequent, smaller-volume voids in vivo. This suggests afferent nerve activity is only one factor contributing to the switch from bladder filling to micturition. Together with afferent nerve activity, higher centers in the central nervous system and the state of arousal are likely critical to coordinating the micturition reflex.


Subject(s)
Urinary Bladder , Urination , Female , Male , Mice , Animals , Urination/physiology , Urinary Bladder/innervation , Afferent Pathways , Disease Models, Animal , Sucrose , Water
5.
Front Pain Res (Lausanne) ; 2: 748385, 2021.
Article in English | MEDLINE | ID: mdl-35295484

ABSTRACT

In the urinary bladder, mechanosensitive ion channels (MSCs) underlie the transduction of bladder stretch into sensory signals that are relayed to the PNS and CNS. PIEZO1 is a recently identified MSC that is Ca2+ permeable and is widely expressed throughout the lower urinary tract. Recent research indicates that PIEZO1 is activated by mechanical stretch or by pharmacological agonism via Yoda1. Aberrant activation of PIEZO1 has been suggested to play a role in clinical bladder pathologies like partial bladder outlet obstruction and interstitial cystitis/bladder pain syndrome (IC/BPS). In the present study, we show that intravesical instillation of Yoda1 in female Wistar rats leads to increased voiding frequency for up to 16 hours after administration compared to vehicle treatment. In a cyclophosphamide (CYP) model of cystitis, we found that the gene expression of several candidate MSCs (Trpv1, Trpv4, Piezo1, and Piezo2) were all upregulated in the urothelium and detrusor following chronic CYP-induced cystitis, but not acute CYP-induced cystitis. Functionally with this model, we show that Ca2+ activity is increased in urothelial cells following PIEZO1 activation via Yoda1 in acute and intermediate CYP treatment, but not in naïve (no CYP) nor chronic CYP treatment. Lastly, we show that activation of PIEZO1 may contribute to pathological bladder dysfunction through the downregulation of several tight junction genes in the urothelium including claudin-1, claudin-8, and zona occludens-1. Together, these data suggest that PIEZO1 activation plays a role in dysfunctional voiding behavior and may be a future, clinical target for the treatment of pathologies like IC/BPS.

6.
Front Behav Neurosci ; 14: 83, 2020.
Article in English | MEDLINE | ID: mdl-32595460

ABSTRACT

The startle response is an unconditional reflex, characterized by the rapid contraction of facial and skeletal muscles, to a sudden and intense startling stimulus. It is an especially useful tool in translational research for its consistency across species, simple neural circuitry, and sensitivity to a variety of experimental manipulations. The rodent acoustic startle response is commonly used to study fundamental properties of the central nervous system, including habituation, sensitization, classical conditioning, fear and anxiety, sensorimotor gating, and drug effects. The rodent startle response is typically assessed in stabilimeter chambers, and while these systems are excellent at measuring startle, they are designed only for this sole purpose. In the present study, we used the VideoFreeze system-a widely used tool for studying Pavlovian fear conditioning-to assess the acoustic startle response in freely moving mice. We validated the use of this system to quantify startle response amplitude and prepulse inhibition of startle. This is the first demonstration to date of using standard video in the automated assessment of the acoustic startle response in rodents. We believe that researchers already using the VideoFreeze system will benefit from the additional ability to assess startle without the purchase of new equipment.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3023-3026, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268949

ABSTRACT

This paper describes a course that, as a result of a university-industry partnership, emphasizes bringing industry experts into the classroom to teach biomedical design. Full-time faculty and industry engineers and entrepreneurs teach the senior technical elective course, Biomedical System Design. This hands-on senior course in biomedical system design places varied but connected emphasis on understanding the biological signal source, electronics design, safety, patient use, medical device qualifications, and good manufacturing practices.


Subject(s)
Biomedical Technology/education , Cooperative Behavior , Industry , Universities , Blood Pressure Determination , Curriculum , Electrocardiography , Electrooculography , Humans , Signal Processing, Computer-Assisted
8.
Front Pharmacol ; 5: 293, 2014.
Article in English | MEDLINE | ID: mdl-25620932

ABSTRACT

Most physiological systems show daily variations in functional output, entrained to the day-night cycle. Humans exhibit a daily rhythm in urinary voiding (micturition), and disruption of this rhythm (nocturia) has significant clinical impact. However, the underlying mechanisms are not well-understood. Recently, a circadian rhythm in micturition was demonstrated in rodents, correlated with functional changes in urodynamics, providing the opportunity to address this issue in an animal model. Smooth muscle cells from mouse bladder have been proposed to express a functional and autonomous circadian clock at the molecular level. In this study, we addressed whether a semi-intact preparation of mouse urinary bladder smooth muscle (UBSM) exhibited measurable differences in contractility between day and night. UBSM tissue strips were harvested at four time points over the diurnal cycle, and spontaneous (phasic) and nerve-evoked contractions were assessed using isometric tension recordings. During the active period (ZT12-24) when micturition frequency is higher in rodents, UBSM strips had no significant differences in maximal- (high K(+)) or nerve-evoked contractions compared to strips harvested from the resting period (ZT0-12). However, a diurnal rhythm in phasic contraction was observed, with higher amplitudes at ZT10. Consistent with the enhanced phasic amplitudes, expression of the BK K(+) channel, a key suppressor of UBSM excitability, was lower at ZT8. Higher expression of BK at ZT20 was correlated with an enhanced effect of the BK antagonist paxilline (PAX) on phasic amplitude, but PAX had no significant time-of-day dependent effect on phasic frequency or nerve-evoked contractions. Overall, these results identify a diurnal difference for one contractile parameter of bladder muscle. Taken together, the results suggest that autonomous clocks in UBSM make only a limited contribution to the integrated control of diurnal micturition patterns.

9.
Article in English | MEDLINE | ID: mdl-20953248

ABSTRACT

The Pavlovian conditioned freezing paradigm has become a prominent mouse and rat model of learning and memory, as well as of pathological fear. Due to its efficiency, reproducibility and well-defined neurobiology, the paradigm has become widely adopted in large-scale genetic and pharmacological screens. However, one major shortcoming of the use of freezing behavior has been that it has required the use of tedious hand scoring, or a variety of proprietary automated methods that are often poorly validated or difficult to obtain and implement. Here we report an extensive validation of the Video Freeze system in mice, a "turn-key" all-inclusive system for fear conditioning in small animals. Using digital video and near-infrared lighting, the system achieved outstanding performance in scoring both freezing and movement. Given the large-scale adoption of the conditioned freezing paradigm, we encourage similar validation of other automated systems for scoring freezing, or other behaviors.

10.
PLoS One ; 5(8): e12298, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20808873

ABSTRACT

In humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night. Rats were chronically instrumented with an intravesical catheter, and bladder pressure, voided volumes, and micturition frequency were measured by continuous filling cystometry during the light (inactive) or dark (active) phases of the circadian cycle. Cage activity was recorded by video during the experiment. We hypothesized that nocturnal rats entrained to a standard 12:12 light:dark cycle would show greater ambulatory activity and more frequent, smaller volume micturitions in the dark compared to the light. Rats studied during the light phase had a bladder capacity of 1.44+/-0.21 mL and voided every 8.2+/-1.2 min. Ambulatory activity was lower in the light phase, and rats slept during the recording period, awakening only to urinate. In contrast, rats studied during the dark were more active, had a lower bladder capacities (0.65+/-0.18 mL), and urinated more often (every 3.7+/-0.9 min). Average bladder pressures were not significantly different between the light and dark (13.40+/-2.49 and 12.19+/-2.85 mmHg, respectively). These results identify a day-night difference in bladder capacity and micturition frequency in chronically-instrumented nocturnal rodents that is phase-locked to the normal circadian locomotor activity rhythm of the animal. Furthermore, since it has generally been assumed that the daily hormonal regulation of renal function is a major driver of the circadian rhythm in urination, and few studies have addressed the involvement of the lower urinary tract, these results establish the bladder itself as a target for circadian regulation.


Subject(s)
Circadian Rhythm/physiology , Urodynamics/physiology , Animals , Clinical Laboratory Techniques , Rats , Rats, Sprague-Dawley
11.
Ann N Y Acad Sci ; 1070: 330-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16888187

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) elicits a transient contraction, sustained increase in the amplitude of spontaneous phasic contractions, and significantly increases the amplitude of nerve-mediated contractions in mouse urinary bladder smooth muscle (UBSM) strips. PACAP immunoreactivity (IR) is increased in micturition reflex pathways following cystitis. PACAP may contribute to altered sensation and bladder overactivity in the chronic bladder inflammatory syndrome, interstitial cystitis.


Subject(s)
Cystitis/pathology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Up-Regulation/drug effects , Urination/drug effects , Animals , Cyclophosphamide/pharmacology , Cystitis/chemically induced , Female , Mice , Mice, Inbred C57BL
12.
Am J Physiol Regul Integr Comp Physiol ; 289(2): R402-R409, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15845880

ABSTRACT

When the urinary bladder is full, activation of parasympathetic nerves causes release of neurotransmitters that induce forceful contraction of the detrusor muscle, leading to urine voiding. The roles of ion channels that regulate contractility of urinary bladder smooth muscle (UBSM) in response to activation of parasympathetic nerves are not well known. The present study was designed to characterize the role of large (BK)- and small-conductance (SK) Ca(2+)-activated K(+) (K(Ca)) channels in regulating UBSM contractility in response to physiological levels of nerve stimulation in UBSM strips from mice. Nerve-evoked contractions were induced by electric field stimulation (0.5-50 Hz) in isolated strips of UBSM. BK and SK channel inhibition substantially increased the amplitude of nerve-evoked contractions up to 2.45 +/- 0.12- and 2.99 +/- 0.25-fold, respectively. When both SK and BK channels were inhibited, the combined response was additive. Inhibition of L-type voltage-dependent Ca(2+) channels (VDCCs) in UBSM inhibited nerve-evoked contractions by 92.3 +/- 2.0%. These results suggest that SK and BK channels are part of two distinct negative feedback pathways that limit UBSM contractility in response to nerve stimulation by modulating the activity of VDCCs. Dysfunctional regulation of UBSM contractility by alterations in BK/SK channel expression or function may underlie pathologies such as overactive bladder.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Parasympathetic Nervous System/physiology , Potassium Channels, Calcium-Activated/physiology , Urinary Bladder/physiology , Animals , Apamin/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Carbachol/pharmacology , Diltiazem/pharmacology , Drug Synergism , Electric Stimulation , Feedback, Physiological , In Vitro Techniques , Large-Conductance Calcium-Activated Potassium Channels , Male , Mice , Mice, Inbred C57BL , Peptides/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors
13.
J Physiol ; 551(Pt 3): 893-903, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12813145

ABSTRACT

Small conductance, calcium-activated potassium (SK) channels have an important role in determining the excitability and contractility of urinary bladder smooth muscle. Here, the role of the SK isoform SK3 was examined by altering expression levels of the SK3 gene using a mouse model that conditionally overexpresses SK3 channels (SK3T/T). Prominent SK3 immunostaining was found in both the smooth muscle (detrusor) and urothelium layers of the urinary bladder. SK currents were elevated 2.4-fold in isolated myocytes from SK3T/T mice. Selective suppression of SK3 expression by dietary doxycycline (DOX) decreased SK current density in isolated myocytes, increased phasic contractions of isolated urinary bladder smooth muscle strips and exposed high affinity effects of the blocker apamin of the SK isoforms (SK1-3), suggesting an additional participation from SK2 channels. The role of SK3 channels in urinary bladder function was assessed using cystometry in conscious, freely moving mice. The urinary bladders of SK3T/T had significantly greater bladder capacity, and urine output exceeded the infused saline volume. Suppression of SK3 channel expression did not alter filling pressure, threshold pressure or bladder capacity, but micturition pressure was elevated compared to control mice. However, SK3 suppression did eliminate excess urine production and caused a marked increase in non-voiding contractions. The ability to examine bladder function in mice in which SK3 channel expression is selectively altered reveals that these channels have a significant role in the control of non-voiding contractions in vivo. Activation of these channels may be a therapeutic approach for management of non-voiding contractions, a condition which characterizes many types of urinary bladder dysfunctions including urinary incontinence.


Subject(s)
Muscle, Smooth/physiology , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Calcium-Activated/metabolism , Urinary Bladder Diseases/physiopathology , Urinary Bladder/physiology , Animals , Apamin/pharmacology , Isometric Contraction/drug effects , Isometric Contraction/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Hypertonia/physiopathology , Patch-Clamp Techniques , Small-Conductance Calcium-Activated Potassium Channels , Urine
14.
Adv Exp Med Biol ; 539(Pt A): 347-57, 2003.
Article in English | MEDLINE | ID: mdl-15088917

ABSTRACT

Negative feedback pathways that relax and stabilize UBSM are critical to the proper functioning of the urinary bladder. The complex interactions between K(Ca) channels and RyRs are just beginning to be unraveled. The consequences of SK, BK, and RyR dysfunction would increase cell excitability and lead to urinary bladder instability. Although each of these channels is a potential target for the development of therapeutics to treat urinary incontinence, SK is of special interest, since this SK isoform does not appear to be present in vascular smooth muscle.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Muscle, Smooth/physiology , Potassium Channels/physiology , Urinary Bladder/physiology , Animals , Humans , Muscle Relaxation/physiology
15.
Novartis Found Symp ; 246: 189-203; discussion 203-7, 221-7, 2002.
Article in English | MEDLINE | ID: mdl-12164309

ABSTRACT

Local and global Ca2+ signals from voltage-dependent Ca2+ channels (VDCCs) and ryanodine-sensitive Ca2+ release (RyRs) channels in the sarcoplasmic reticulum (SR) encode information to different Ca2+-sensitive targets including the large- (BK) and small-conductance (SK) Ca2+-activated K+ channels in the surface membrane. In smooth muscle, unlike cardiac muscle, Ca2+ signalling to RyRs is not local, exhibiting a significant lag between VDCC activation and subsequent RyR stimulation, measured as Ca2+ sparks and associated BK currents. However, Ca2+ signalling from RyRs (Ca2+ sparks) to BK channels appears to be local in arterial (ASM) and urinary bladder smooth muscle (UBSM), consistent with a close proximity of SR RyRs to BK channels. The response of BK channels in ASM and UBSM depends on the tuning of the Ca2+/voltage sensitivity of the BK channel by its accessory subunit, the beta1 subunit. UBSM, in contrast to ASM, has both BK and SK channels. SK channels in UBSM are solely activated by Ca2+ signals from VDCCs, whereas BK channels are activated by Ca2+ from both VDCCs and RyRs. The differential regulation of BK and SK channels by Ca2+ signals underlies their roles in regulating action potential duration and membrane potential (BK channels) and after-hyperpolarizations (SK channels) in smooth muscle.


Subject(s)
Calcium Signaling/physiology , Membrane Potentials/physiology , Muscle Contraction/physiology , Sarcoplasmic Reticulum/physiology , Animals , Chloride Channels/physiology , Mammals , Muscle, Smooth/physiology , Potassium Channels/physiology , Ryanodine Receptor Calcium Release Channel/physiology
16.
J Physiol ; 541(Pt 2): 483-92, 2002 Jun 01.
Article in English | MEDLINE | ID: mdl-12042353

ABSTRACT

Small-conductance (SK) and large-conductance (BK) Ca(2+)-activated K(+) channels are key regulators of excitability in urinary bladder smooth muscle (UBSM) of guinea-pig. The overall goal of this study was to define how SK and BK channels respond to Ca(2+) signals from voltage-dependent Ca(2+) channels (VDCCs) in the surface membrane and from ryanodine-sensitive Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) membrane. To characterize the role of SK channels in UBSM, the effects of the SK channel blocker apamin on phasic contractions were examined. Apamin caused a dose-dependent increase in the amplitude of phasic contractions over a broad concentration range (10(-10) to 10(-6) M). To determine the effects of Ca(2+) signals from VDCCs and RyRs to SK and BK channels, whole cell membrane current was measured in isolated myocytes bathed in physiological solutions. Depolarization (-70 to +10 mV for 100 ms) of isolated myocytes caused an inward Ca(2+) current (I(Ca)), followed by an outward current. The outward current was reduced in a dose-dependent manner by apamin (10(-10) to 10(-6) M), and designated I(SK). I(SK) had a mean amplitude of 53.8 +/- 6.1 pA or approximately 1.4 pA pF(-1) at +10 mV. The amplitude of I(SK) correlated with the peak I(Ca). Blocking I(Ca) abolished I(SK). In contrast, I(SK) was insensitive to the RyR blocker ryanodine (10 microM). These data indicate that Ca(2+) signals from VDCCs, but not from RyRs, activate SK channels. BK channel currents (I(BK)) were isolated from other currents by using the BK channel blockers tetraethylammonium ions (TEA(+); 1 mM) or iberiotoxin (200 nM). Voltage steps evoked transient and steady-state I(BK) components. Transient BK currents have previously been shown to result from BK channel activation by local Ca(2+) release through RyRs ('Ca(2+) sparks'). Transient BK currents were inhibited by ryanodine (10 microM), as expected, and had a mean amplitude of 152.6 pA at +10 mV. The mean number of transient BK currents during a voltage step (range 0 to 3) correlated with I(Ca). There was a long delay (52.4 +/- 2.7 ms) between activation of I(Ca) and the first transient BK current. In contrast, ryanodine did not affect the steady-state BK current (mean amplitude 135.4 pA) during the voltage step. The steady-state BK current was reduced 95 % by inhibition of VDCCs, suggesting that this process depends largely on Ca(2+) entry through VDCCs and not Ca(2+) release through RyRs. These results indicate that Ca(2+) entry through VDCCs activates both BK and SK channels, but Ca(2+) release (Ca(2+) sparks) through RyRs activates only BK channels.


Subject(s)
Calcium Signaling/physiology , Potassium Channels, Calcium-Activated , Potassium Channels, Voltage-Gated , Potassium Channels/physiology , Ryanodine Receptor Calcium Release Channel/drug effects , Urinary Bladder/cytology , Algorithms , Animals , Apamin/pharmacology , Cell Separation , Electric Stimulation , Electrophysiology , Guinea Pigs , In Vitro Techniques , Isometric Contraction/physiology , Kv1.1 Potassium Channel , Membrane Potentials/physiology , Muscle, Smooth/physiology , Patch-Clamp Techniques , Small-Conductance Calcium-Activated Potassium Channels , Urinary Bladder/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...