Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 682576, 2021.
Article in English | MEDLINE | ID: mdl-34777455

ABSTRACT

The objective of this study was to compare the accuracies of genomic prediction for milk yield, fat yield, and protein yield from Philippine dairy buffaloes using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with the accuracies based on pedigree BLUP (pBLUP). To also assess the bias of the prediction, the regression coefficient (slope) of the adjusted phenotypes on the predicted breeding values (BVs) was also calculated. Two data sets were analyzed. The GENO data consisting of all female buffaloes that have both phenotypes and genotypes (n = 904 with 1,773,305-days lactation records) were analyzed using pBLUP and GBLUP. The ALL data, consisting of the GENO data plus females with phenotypes but not genotyped (n = 1,975 with 3,821,305-days lactation records), were analyzed using pBLUP and ssGBLUP. Animals were genotyped with the Affymetrix 90k buffalo genotyping array. After quality control, 60,827 single-nucleotide polymorphisms were used for downward analysis. A pedigree file containing 2,642 animals was used for pBLUP and ssGBLUP. Accuracy of prediction was calculated as the correlation between the predicted BVs of the test set and adjusted phenotypes, which were corrected for fixed effects, divided by the square root of the heritability of the trait, corrected for the number of lactations used in the test set. To assess the bias of the prediction, the regression coefficient (slope) of the adjusted phenotypes on the predicted BVs was also calculated. Results showed that genomic methods (GBLUP and ssGBLUP) provide more accurate predictions compared to pBLUP. Average GBLUP and ssGBLUP accuracies were 0.24 and 0.29, respectively, whereas average pBLUP accuracies (for GENO and ALL data) were 0.21 and 0.22, respectively. Slopes of the two genomic methods were also closer to one, indicating lesser bias, compared to pBLUP. Average GBLUP and ssGBLUP slopes were 0.89 and 0.84, respectively, whereas the average pBLUP (for GENO and ALL data) slopes were 0.80 and 0.54, respectively.

2.
Front Genet ; 12: 629861, 2021.
Article in English | MEDLINE | ID: mdl-33828581

ABSTRACT

The swamp buffalo is a domesticated animal commonly found in Southeast Asia. It is a highly valued agricultural animal for smallholders, but the production of this species has unfortunately declined in recent decades due to rising farm mechanization. While swamp buffalo still plays a role in farmland cultivation, this species' purposes has shifted from draft power to meat, milk, and hide production. The current status of swamp buffaloes in Southeast Asia is still understudied compared to its counterparts such as the riverine buffaloes and cattle. This review discusses the background of swamp buffalo, with an emphasis on recent work on this species in Southeast Asia, and associated genetics and genomics work such as cytogenetic studies, phylogeny, domestication and migration, genetic sequences and resources. Recent challenges to realize the potential of this species in the agriculture industry are also discussed. Limited genetic resource for swamp buffalo has called for more genomics work to be done on this species including decoding its genome. As the economy progresses and farm mechanization increases, research and development for swamp buffaloes are focused on enhancing its productivity through understanding the genetics of agriculturally important traits. The use of genomic markers is a powerful tool to efficiently utilize the potential of this animal for food security and animal conservation. Understanding its genetics and retaining and maximizing its adaptability to harsher environments are a strategic move for food security in poorer nations in Southeast Asia in the face of climate change.

3.
Mol Biol Rep ; 39(12): 10769-74, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23053974

ABSTRACT

Comparative analyses of methanogen diversity in the rumen of crossbred buffalo and cattle fed the same diet in the Philippines was performed by cloning the methyl coenzyme M reductase A (mcrA) gene. The cattle and buffalo libraries consisted of 50 clones each. Comparative analysis of the amino acid sequence revealed that these 2 libraries differed significantly (P < 0.01). The deduced amino acid sequences of the clones were classified into 9 operational taxonomic units (OTUs) in buffalo and 11 OTUs in cattle. Sequence similarity between the clones and known cultured methanogens ranged from 86 to 97 % for buffalo and 84 to 99 % for cattle. Methanobrevibacter species were predominant in buffalo (64 % of the clones), and an unknown mcrA was predominant in cattle (52 % of the clones). A large number of clones with low similarity to cultivated methanogens was observed in both buffalo and cattle, suggesting the presence of an unknown methanogen species in their rumen.


Subject(s)
Buffaloes/microbiology , Cattle/microbiology , Crosses, Genetic , Genetic Variation , Methanobacteriales/genetics , Oxidoreductases/genetics , Rumen/microbiology , Amino Acid Sequence , Animals , Breeding , Female , Genes, Bacterial/genetics , Male , Molecular Sequence Data , Philippines , Phylogeny
4.
Infect Genet Evol ; 9(4): 449-52, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19460309

ABSTRACT

Trypanosoma evansi (T. evansi) causes the disease called Surra in domestic animals, which is of great economic importance in South Asian countries. In order to improve the diagnosis of Surra, we endeavored to develop a real-time PCR assay for the detection and quantification of parasites in water buffaloes using specific primers for the T. evansi Rode Trypanozoon antigen type (RoTat) 1.2 Variable Surface Glycoprotein (VSG) gene, which is a known diverse DNA region in trypanosomes. The quantitative detection limit of the assay was 10(2) trypanosomes per mL of blood, and the identity of the amplicon was confirmed in all assays by melting curve analysis. To evaluate the clinical applicability of this procedure, detection and estimation of parasitemia in blood samples obtained from water buffaloes and horses were conducted. T. evansi was detected in 17/607 (2.8%) blood samples, with parasitemia levels ranging from >10(1) to 10(7) parasites per mL of blood. Interestingly, out of the 17 PCR positive animals, 3 had previously received trypanocidal treatment and 1 had abortion history. These data indicate that real-time PCR for the estimation of putative parasitemia levels is a quantitatively and objectively applicable technique for clinical diagnosis of Surra, and could help to understand disease stage and risk of transmission of T. evansi.


Subject(s)
Buffaloes/parasitology , Polymerase Chain Reaction/methods , Trypanosoma/isolation & purification , Trypanosomiasis/veterinary , Animals , Membrane Glycoproteins/genetics , Parasitemia/blood , Parasitemia/genetics , Parasitemia/veterinary , Philippines , Protozoan Proteins/genetics , Sensitivity and Specificity , Trypanosoma/genetics , Trypanosomiasis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...