Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38894347

ABSTRACT

One challenge in predicting soil parameters using in situ visible and near infrared spectroscopy is the distortion of the spectra due to soil moisture. External parameter orthogonalization (EPO) is a mathematical method to remove unwanted variability from spectra. We created two different EPO correction matrices based on the difference between spectra collected in situ and, respectively, spectra collected from the same soil samples after drying and sieving and after drying, sieving and finely grinding. Spectra from 134 soil samples recorded with two different spectrometers were split into calibration and validation sets and the two EPO corrections were applied. Clay, organic carbon and total nitrogen content were predicted by partial least squares regression for uncorrected and EPO-corrected spectra using models based on the same type of spectra ("within domain") as well as using laboratory-based models to predict in situ collected spectra ("cross-domain"). Our results show that the within-domain prediction of clay is improved with EPO corrections only for the research grade spectrometer, with no improvement for the other parameters. For the cross-domain predictions, there was a positive effect from both EPO corrections on all parameters. Overall, we also found that in situ collected spectra provided an equally successful prediction as laboratory-based spectra.

2.
Anim Reprod Sci ; 202: 87-95, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30772105

ABSTRACT

Augmentation of parturition can be used to advance labor in mares to occur at a time when personnel is available to assist if necessary. We performed a retrospective study to determine the efficacy and safety of augmentation to manage foalings. Augmentation was performed with 3 IU oxytocin i.v. when mammary calcium concentrations were ≥250 ppm, mammary secretion pH ≤ 6.5, and the mare showed impending signs of parturition. Augmented parturitions (n = 19) were compared with three different control groups. The three control groups were: 1) Time Match control (n = 37) which were non-augmented foalings in the barn during the same time period; 2) Mare Match control (n = 32) which were the non-augmented parturitions of the augmented mares in previous years; and 3) Historic Match control (n = 165) consisted of foalings that occurred from 2006 to 2016 in the facility. All augmented mares foaled within two h with an average of 44 min (range 20-75) after oxytocin injection. The interval between foaling and the foal standing was shorter in augmented parturitions compared with historic match controls. The interval between foaling and the foal nursing was longer with augmented parturitions compared with time match and historic match controls. Duration of fetal membrane retention was not different between all groups. Augmentation of imminent parturition is potentially a safe and effective treatment for mares and foals. Implementation of augmentation as a routine procedure may increase the likelihood of enteral administration of colostrum to foals.


Subject(s)
Calcium/metabolism , Mammary Glands, Animal/metabolism , Oxytocics/pharmacology , Oxytocin/pharmacology , Parturition , Pregnancy Outcome/veterinary , Animals , Animals, Newborn , Breeding , Female , Horses , Hydrogen-Ion Concentration , Pregnancy , Retrospective Studies , Time Factors
3.
Front Plant Sci ; 10: 1745, 2019.
Article in English | MEDLINE | ID: mdl-32063910

ABSTRACT

Identifying opportunities and limitations for closing yield gaps is essential for setting right the efforts dedicated to improve germplasm and agronomic practices. This study analyses genotypes × environments interaction (G × E), genetic progress, and grain yield stability under contrasting production systems. For this, we analyzed datasets obtained from three Swiss trial-networks of winter wheat that were designed to evaluate genotypes under organic farming conditions, conventional management with low-inputs (150 kg nitrogen (N) ha-1 with no fungicide application) and conventional management with high-inputs (170 kg N ha-1 with fungicide application). The datasets covered the periods from 1998 to 2018 for organic and conventional management with low-inputs and from 2008 to 2018 for conventional management with high-inputs. The trial-networks evaluated each year an average of 36 winter wheat genotypes that included released varieties, advanced breeding lines, and lines for registration and post-registration in Switzerland. We investigated within each trial-network the influence of years, genotypes, environments and their interactions on the total variance in grain yield and grain N concentration using variance components analyses. We further applied mixed models with regression features to dissect genetic components due to breeding efforts from non-genetic components. The genotype as a single factor or as a factor interacting with the environment or the year (G × E, G × year, and G × E × year) explained 13% (organic), 20% (conventional low-inputs), and 24% (conventional high-inputs) of the variance in grain yield, while the corresponding values for grain N concentration were 29%, 25%, and 32%. Grain yield has stagnated since 1990 for conventional systems while the trend under organic management was slightly negative. The dissection of a genetic component from the grain yield trends under conventional management showed that genetic improvements contributed with 0.58 and 0.68 t ha-1 y-1 with low- and high- inputs, respectively. In contrast, a significant genetic source in the grain yield trend under organic management was not detected. Therefore, breeding efforts have been less effective on the wheat productivity for organic farming conditions than for conventional ones.

4.
Environ Sci Pollut Res Int ; 24(33): 25731-25740, 2017 Nov.
Article in English | MEDLINE | ID: mdl-26545891

ABSTRACT

The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p < 0.10). The use of the biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.


Subject(s)
Crop Production , Edible Grain/drug effects , Fertilizers/analysis , Hordeum/drug effects , Manure/analysis , Rabbits , Animals , Dose-Response Relationship, Drug , Edible Grain/growth & development , Hordeum/growth & development , Random Allocation
6.
Ann Bot ; 112(2): 253-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23378521

ABSTRACT

BACKGROUND: There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root-root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root-root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. SCOPE: Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. CONCLUSIONS: The development of non-invasive methods to dynamically study root-root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root-root interactions. By following the dynamics of root-root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.


Subject(s)
Plant Roots/physiology , Agriculture , Ecology , Magnetic Resonance Spectroscopy , Models, Theoretical , Plant Roots/growth & development , Positron-Emission Tomography , Soil , Species Specificity
7.
J Environ Qual ; 39(3): 845-54, 2010.
Article in English | MEDLINE | ID: mdl-20400580

ABSTRACT

Growing nitrogen (N) catch crops can reduce NO(3)-N leaching after cultivating cereals. The objective of this study was to relate NO(3)-N leaching to variation in the uptake of N and the size and distribution of the root systems of different catch crops species. In a 3-yr lysimeter experiment, phacelia (Phacelia tanacetifolia Benth.), sunflower (Helianthus annuus L.), and a Brassica species (yellow mustard [Brassica alba L.] or a hybrid of turnip rape [B. rapa L. spp. oleifera (DC.) Metzg.] and Chinese cabbage [B. rapa L. ssp. chinensis (L.) Hanelt]) were grown after the harvest of spring wheat under two levels of N supply. Bare soil lysimeters served as the control. Water percolation from the lysimeters and the NO(3)(-) concentration in the leachate were measured weekly from the sowing until the presumed frost-kill of the catch crops. Minirhizotrons were used to assess the spatial and temporal patterns of root growth from 0.10 to 1.00 m. The catch crop species differed in their shoot biomass, N uptake, total NO(3)-N leaching, and root growth. The results suggested that there was no strict relationship between the total NO(3)-N leaching of each catch crop species and the N uptake or parameters that indicate static characteristics of the root system. In contrast, the ranking of each catch crop species by parameters that indicate early root growth was inversely related to the ranking of each catch crop species in NO(3)-N leaching. The rapid establishment of the root system is essential for a catch crop following spring wheat to reduce the amount of NO(3)-N leaching after the harvest of spring wheat.


Subject(s)
Agriculture/methods , Crops, Agricultural/metabolism , Nitrates/chemistry , Nitrogen/chemistry , Plant Roots/growth & development , Triticum/physiology , Environmental Monitoring , Nitrates/metabolism , Nitrogen/metabolism , Soil/analysis , Water Pollutants, Chemical , Water Pollution, Chemical/prevention & control
8.
J Environ Qual ; 38(4): 1410-9, 2009.
Article in English | MEDLINE | ID: mdl-19465716

ABSTRACT

An experiment covering a 2-yr spring wheat (Triticum aestivum L.) catch crop succession was conducted in lysimeters to account for the losses of N due to leaching. We sought to relate these losses to the N uptake of the main crop and to integrate the estimated N loss and uptake into a balance. The non-winter hardy catch crops [yellow mustard (Sinapis alba L.), Phacelia (Phacelia tanacetifolia Benth), and sunflower (Helianthus annuus L.)] as well as bare soil fallow were studied at low and high N input levels of 4 and 29 g N m(-2) yr(-1), respectively. Catch crops allowed for an effective reduction of N leaching of 0.33 to 1.67 g N m(-2) yr(-1) compared to fallow. Reductions in N leaching were achieved mainly by avoiding the fallow period during autumn and winter while the catch crop species grown had little impact. During the spring wheat growing season, N leaching losses were highest after yellow mustard, the most effective catch crop for the entire crop succession. A balance of N indicated that the reductions in N leaching exerted by the catch crops did not result in a higher overall utilization of N by spring wheat. Thus, the efficacy shown by catch crops in reducing N leaching during growth is relatively lower when considering the entire crop succession. In addition, the N saved by growing catch crops does not increase N utilization by succeeding spring wheat.


Subject(s)
Crops, Agricultural/metabolism , Nitrogen/metabolism , Triticum/metabolism , Seasons
9.
Funct Plant Biol ; 36(11): 930-937, 2009 Nov.
Article in English | MEDLINE | ID: mdl-32688704

ABSTRACT

Roots take up most of the resources required by a plant, but a lack of efficient research tools hinders our understanding of the function and relevance of the root system. This is especially evident when the research focus is not on a single plant, but on multiple plants that share the same soil resources. None of the available methods allow for simple, inexpensive, non-destructive, and objective assignment of observed roots in a mixture of plants to a target plant. Here, we demonstrate that transgenic plants expressing the green fluorescent protein (GFP), combined with the well established minirhizotron technique, is a route to overcoming this limitation. We planted transgenic maize (Zea mays L.) in combination with either its corresponding wild type, Italian ryegrass (Lolium multiflorum Lam.), or soybean (Glycine max (L.) Merr.). Identification of fluorescent roots allows the relative distribution of roots of each plant type and their interaction and interference with each other to be observed. The selected plants are suitable for model experiments to unravel fundamental belowground ecological processes. Because genetic transformation of plants is an established technique that can be applied to a large set of plant species, this method will be of interest to a broad range of research areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...