Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Transl Med Commun ; 8(1): 12, 2023.
Article in English | MEDLINE | ID: mdl-37096233

ABSTRACT

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, there is no curative intent therapy able to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating NET-forming neutrophils [NET + Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b + [NET + N] immunotyped for dual endothelin-1/signal peptide receptor (DEspR ±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)-ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET + N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA (rho r S = 0.80) and ICUFD (r S = -0.76); circulating DEspR + [NET + Ns] with t1-SOFA (r S = 0.71), t2-SOFA (r S = 0.62), and ICUFD (r S = -0.63), and ANC with t1-SOFA (r S = 0.71), and t2-SOFA (r S = 0.61).Causal mediation analysis identified DEspR + [NET + Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR + [NET + Ns] were theoretically reduced to zero. Concordantly, DEspR + [NET + Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR + [NET + Ns] were reduced to zero. In patients with t1-SOFA > 1, the indirect effect of a hypothetical treatment eliminating DEspR + [NET + Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR + [NET + Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR + [NET + Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR + [NET + Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1186/s41231-023-00143-x.

2.
Res Sq ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778407

ABSTRACT

Background: Cumulative research show association of neutrophils and neutrophil extracellular traps (NETs) with poor outcomes in severe COVID-19. However, to date, no curative intent therapy has been identified to block neutrophil/NETs-mediated progression of multi-organ dysfunction. Because of emerging neutrophil heterogeneity, the study of subsets of circulating neutrophil-extracellular trap (NET)-forming neutrophils [NET+Ns] as mediators of multi-organ failure progression among patients with COVID-19 is critical to identification of therapeutic targets. Methods: We conducted a prospective observational study of circulating levels of CD11b+[NET+N] immunotyped for dual endothelin-1/signal peptide receptor, (DEspR±) expression by quantitative immunofluorescence-cytology and causal mediation analysis. In 36 consented adults hospitalized with mod-severe COVID-19, May to September 2020, we measured acute multi-organ failure via SOFA-scores and respiratory failure via SaO2/FiO2 (SF)ratio at time points t1 (average 5.5 days from ICU/hospital admission) and t2 (the day before ICU-discharge or death), and ICU-free days at day28 (ICUFD). Circulating absolute neutrophil counts (ANC) and [NET+N] subset-specific counts were measured at t1. Spearman correlation and causal mediation analyses were conducted. Results: Spearman correlation analyses showed correlations of t1-SOFA with t2-SOFA ( rho r S =0.80) and ICUFD ( r S =-0.76); circulating DEspR+[NET+Ns] with t1-SOFA ( r S = 0.71), t2-SOFA ( r S =0.62), and ICUFD ( r S =-0.63), and ANC with t1-SOFA ( r S =0.71), and t2-SOFA ( r S =0.61). Causal mediation analysis identified DEspR+[NET+Ns] as mediator of 44.1% [95% CI:16.5,110.6] of the causal path between t1-SOFA (exposure) and t2-SOFA (outcome), with 46.9% [15.8,124.6] eliminated when DEspR+[NET+Ns] were theoretically reduced to zero. Concordantly, DEspR+[NET+Ns] mediated 47.1% [22.0,72.3%] of the t1-SOFA to ICUFD causal path, with 51.1% [22.8,80.4%] eliminated if DEspR+[NET+Ns] were reduced to zero. In patients with t1-SOFA >1, the indirect effect of a hypothetical treatment eliminating DEspR+[NET+Ns] projected a reduction of t2-SOFA by 0.98 [0.29,2.06] points and ICUFD by 3.0 [0.85,7.09] days. In contrast, there was no significant mediation of SF-ratio through DEspR+[NET+Ns], and no significant mediation of SOFA-score through ANC. Conclusions: Despite equivalent correlations, DEspR+[NET+Ns], but not ANC, mediated progression of multi-organ failure in acute COVID-19, and its hypothetical reduction is projected to improve ICUFD. These translational findings warrant further studies of DEspR+[NET+Ns] as potential patient-stratifier and actionable therapeutic target for multi-organ failure in COVID-19.

3.
Sci Rep ; 13(1): 2703, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792616

ABSTRACT

Progressive secondary brain injury-induced by dysregulated neuroinflammation in spontaneous intracerebral hemorrhage (sICH)-underlies high sICH-mortality and remains without FDA-approved pharmacotherapy. Clinical insight that hematoma-directed interventions do not improve mortality prioritizes resolving acute secondary brain injury in sICH. As neutrophils are implicated in sICH secondary brain injury, we tested whether inhibition of a rogue neutrophil-subset expressing the dual endothelin-1/signal peptide receptor (DEspR) and associated with secondary tissue injury, DEspR+ CD11b+ immunotype, will attenuate mortality in a hypertensive-sICH (hsICH) rat model. We confirmed sICH-related deaths in hsICH-rats by T2*-weighted 9.4 T MRI and DEspR+ neutrophils in hsICH-rat brain perihematomal areas by immunostaining. At acute sICH, anti-DEspR muIgG1-antibody, mu10a3, treatment increased median survival in hsICH rats vs controls (p < 0.0001). In pre-stroke sICH, weekly 10a3-treatment did not predispose to infection and delayed sICH-onset vs controls (p < 0.0001). As potential sICH-therapeutic, we tested humanized anti-DEspR IgG4S228P-mAb, hu6g8. In vitro, hu6g8 reversed delayed-apoptosis in DEspR+ CD11b+ neutrophils. In vivo, hu6g8 increased median survival and reduced neurologic symptoms in male/female hsICH-rats vs controls (p < 0.0001). Altogether, preclinical efficacy of inhibition of DEspR+ CD11b+ neutrophils in acute sICH-without infection complications, supports the potential of anti-DEspR therapy in sICH. Data provide basis for clinical study of DEspR+ CD11b+ neutrophil-subset in sICH patients.


Subject(s)
Brain Injuries , Hypertension , Stroke , Animals , Female , Male , Rats , Brain Injuries/complications , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Hypertension/complications , Stroke/complications , Pseudogenes
4.
Theranostics ; 12(18): 7646-7667, 2022.
Article in English | MEDLINE | ID: mdl-36451861

ABSTRACT

Rationale: High mortality in pancreatic cancer (PDAC) and triple negative breast cancer (TNBC) highlight the need to capitalize on nanoscale-design advantages for multifunctional diagnostics and therapies. DNA/RNA-therapies can provide potential breakthroughs, however, to date, there is no FDA-approved systemic delivery system to solid tumors. Methods: Here, we report a Janus-nanoparticle (jNP)-system with modular targeting, payload-delivery, and targeted-imaging capabilities. Our jNP-system consists of 10 nm ultrasmall superparamagnetic iron oxide nanoparticles (USPION) with opposing antibody-targeting and DNA/RNA payload-protecting faces, directionally self-assembled with commercially available zwitterionic microbubbles (MBs) and DNA/RNA payloads. Results: Sonoporation of targeted jNP-payload-MBs delivers functional reporter-DNA imparting tumor-fluorescence, and micro-RNA126 reducing non-druggable KRAS in PDAC-Panc1 and TNBC-MB231 xenografted tumors. The targeting jNP-system enhances ultrasound-imaging of intra-tumoral microvasculature using less MBs/body weight (BW). The jNP-design enhances USPION's T2*-magnetic resonance (MR) and MR-imaging of PDAC-peritoneal metastases using less Fe/BW. Conclusion: Altogether, data advance the asymmetric jNP-design as a potential theranostic Janus-USPION Modular Platform - a JUMP forward.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Precision Medicine , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/therapy , Diagnostic Imaging , DNA , Pancreatic Neoplasms
5.
Front Immunol ; 13: 1008390, 2022.
Article in English | MEDLINE | ID: mdl-36275710

ABSTRACT

Background and objective: The correlation (Rs > 0.7) of neutrophils expressing the dual endothelin1/signal peptide receptor (DEspR+CD11b+/CD66b+) with severity of hypoxemia (SF-ratio) and multi-organ failure (SOFA-score) in patients with acute respiratory distress syndrome (ARDS) suggest the hypothesis that the DEspR+ neutrophil-subset is an actionable therapeutic target in ARDS. To test this hypothesis, we conducted in vivo studies to validate DEspR+ neutrophil-subset as therapeutic target and test efficacy of DEspR-inhibition in acute neutrophilic hyperinflammation models. Methods: We performed tests in lipopolysaccharide (LPS)-induced acute neutrophilic inflammation in three species - human, rhesus macaque, rat - with increasing dose-dependent severity. We measured DEspR+CD66b+ neutrophils in bronchoalveolar lavage fluid (BALF) in healthy volunteers (HVs) 24-hours after segmental LPS-challenge by ChipCytometry, and DEspR+CD11b+ neutrophils in whole blood and BALF in an LPS-induced transient acute lung injury (ALI) model in macaques. We determined anti-DEspR antibody efficacy in vivo in LPS-ALI macaque model and in high-mortality LPS-induced encephalopathy in hypertensive rats. Results: ChipCytometry detected increased BALF total neutrophil and DEspR+CD66b+ neutrophil counts after segmental LPS-challenge compared to baseline (P =0.034), as well as increased peripheral neutrophil counts and neutrophil-lymphocyte ratio (NLR) compared to pre-LPS level (P <0.05). In the LPS-ALI macaque model, flow cytometry detected increased DEspR+ and DEspR[-] neutrophils in BALF, which was associated with moderate-severe hypoxemia. After determining pharmacokinetics of single-dose anti-DEspR[hu6g8] antibody, one-time pre-LPS anti-DEspR treatment reduced hypoxemia (P =0.03) and neutrophil influx into BALF (P =0.0001) in LPS-ALI vs vehicle mock-treated LPS-ALI macaques. Ex vivo live cell imaging of macaque neutrophils detected greater "intrinsic adhesion to hard-surface" in DEspR+ vs DEspR[-] neutrophils (P <0.001). Anti-DEspR[hu6g8] antibody abrogated intrinsic high adhesion in DEspR+ neutrophils, but not in DEspR[-] neutrophils (P <0.001). In the LPS-encephalopathy rat model, anti-DEspR[10a3] antibody treatment increased median survival (P =0.0007) and exhibited brain target engagement and bioeffects. Conclusion: Detection of increased DEspR+ neutrophil-subset in human BALF after segmental LPS-challenge supports the correlation of circulating DEspR+ neutrophil counts with severity measure (SOFA-score) in ARDS. Efficacy and safety of targeted inhibition of DEspR+CD11b+ neutrophil-subset in LPS-induced transient-ALI and high-mortality encephalopathy models identify a potential therapeutic target for neutrophil-mediated secondary tissue injury.


Subject(s)
Acute Lung Injury , Brain Diseases , Respiratory Distress Syndrome , Humans , Rats , Animals , Lipopolysaccharides/adverse effects , Neutrophils , Macaca mulatta , Acute Lung Injury/metabolism , Inflammation/metabolism , Respiratory Distress Syndrome/drug therapy , Hypoxia/metabolism , Brain Diseases/metabolism
6.
Front Neurol ; 13: 935579, 2022.
Article in English | MEDLINE | ID: mdl-35959408

ABSTRACT

Objective: Cumulative clinical, cellular, and molecular evidence reinforces the role of neutrophils in secondary brain injury in spontaneous intracerebral hemorrhage (sICH). However, since generalized neutrophil inhibition is detrimental, identification of targetable "rogue" neutrophil subsets associated with sICH severity is key. Methods: In a pilot prospective observational study of consented patients with sICH, we immunotyped whole blood to assess circulating neutrophil markers (~day 3 after ICH symptoms onset): (a) DEspR±CD11b± neutrophils by flow cytometry, (b) DEspR±CD11b± neutrophil extracellular trap (NET)-forming neutrophils by immunofluorescence cytology, and (c) neutrophil-lymphocyte ratio (NLR). Using Spearman rank correlation (r) with Bonferroni correction, we assessed the association of neutrophil markers with same-day clinical and neuroimaging parameters of sICH severity, index ICH score, 90-day modified Rankin Scale (mRS) score, and potential interrelationships. As comparators, we assessed same-day plasma biomarkers elevated in sICH: interleukin-6/IL-6, myeloperoxidase/MPO, soluble-terminal complement complex/sC5b-9, endothelin-1/ET-1, and mitochondrial/nuclear DNA ratio (mt/nDNA ratio). Results: We detected strong correlations [r(n = 13) > 0.71, power > 0.8, Bonferroni corrected p B < 0.05] for all three neutrophil markers with 90-day mRS score, differentially for DEspR+CD11b+ neutrophil counts, and NLR with perihematomal edema (PHE) volume and for DEspR+CD11b+ NET-forming neutrophil counts with intraparenchymal hemorrhage (IPH)-volume. Only DEspR+CD11b+ neutrophil counts show a strong correlation with index ICH score, same-day Glasgow Coma Scale (GCS) score, and NLR and NET-forming neutrophil counts. The sum of the ICH score and three neutrophil markers exhibited the highest correlation: [r(n = 13) 0.94, p B = 10-5]. In contrast, plasma biomarkers tested were elevated except for MPO but exhibited no correlations in this pilot study. Conclusion: Strong correlation with multiple sICH severity measures, NET formation, and NLR identifies DEspR+CD11b+ neutrophils as a putative "rogue" neutrophil subset in sICH. The even stronger correlation of the sum of three neutrophil markers and the index ICH score with 90-day mRS outcome reinforces early neutrophil-mediated secondary brain injury as a key determinant of outcome in patients with sICH. Altogether, data provide a basis for the formal study of the DEspR+CD11b+ neutrophil subset as a potential actionable biomarker for neutrophil-driven secondary brain injury in sICH. Data also show ex vivo analysis of patients with sICH neutrophils as a translational milestone to refine hypotheses between preclinical and clinical studies.

7.
Sci Rep ; 12(1): 5583, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379853

ABSTRACT

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to COVID-19-ARDS. This secondary tissue injury arises from dysregulated neutrophils and neutrophil extracellular traps (NETs) intended to kill pathogens, but instead cause cell-injury. Insufficiency of pleiotropic therapeutic approaches delineate the need for inhibitors of dysregulated neutrophil-subset(s) that induce subset-specific apoptosis critical for neutrophil function-shutdown. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/VEGF-signal peptide receptor, DEspR, are apoptosis-resistant like DEspR+ cancer-cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID-19-ARDS. Here, we report the significant association of increased peripheral DEspR+CD11b+ neutrophil-counts with severity and mortality in ARDS and COVID-19-ARDS, and intravascular NET-formation, in contrast to DEspR[-] neutrophils. We detect DEspR+ neutrophils and monocytes in lung tissue patients in ARDS and COVID-19-ARDS, and increased neutrophil RNA-levels of DEspR ligands and modulators in COVID-19-ARDS scRNA-seq data-files. Unlike DEspR[-] neutrophils, DEspR+CD11b+ neutrophils exhibit delayed apoptosis, which is blocked by humanized anti-DEspR-IgG4S228P antibody, hu6g8, in ex vivo assays. Ex vivo live-cell imaging of Rhesus-derived DEspR+CD11b+ neutrophils showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data identify DEspR+CD11b+ neutrophils as a targetable 'rogue' neutrophil-subset associated with severity and mortality in ARDS and COVID-19-ARDS.


Subject(s)
COVID-19 , Extracellular Traps , Respiratory Distress Syndrome , Humans , Immunophenotyping , Neutrophils
8.
Sci Rep ; 11(1): 22463, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789851

ABSTRACT

SARS-CoV-2 infection results in a spectrum of outcomes from no symptoms to widely varying degrees of illness to death. A better understanding of the immune response to SARS-CoV-2 infection and subsequent, often excessive, inflammation may inform treatment decisions and reveal opportunities for therapy. We studied immune cell subpopulations and their associations with clinical parameters in a cohort of 26 patients with COVID-19. Following informed consent, we collected blood samples from hospitalized patients with COVID-19 within 72 h of admission. Flow cytometry was used to analyze white blood cell subpopulations. Plasma levels of cytokines and chemokines were measured using ELISA. Neutrophils undergoing neutrophil extracellular traps (NET) formation were evaluated in blood smears. We examined the immunophenotype of patients with COVID-19 in comparison to that of SARS-CoV-2 negative controls. A novel subset of pro-inflammatory neutrophils expressing a high level of dual endothelin-1 and VEGF signal peptide-activated receptor (DEspR) at the cell surface was found to be associated with elevated circulating CCL23, increased NETosis, and critical-severity COVID-19 illness. The potential to target this subpopulation of neutrophils to reduce secondary tissue damage caused by SARS-CoV-2 infection warrants further investigation.


Subject(s)
COVID-19/immunology , Neutrophils/immunology , Pseudogenes/immunology , Aged , Chemokines/metabolism , Cohort Studies , Critical Illness , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Extracellular Traps/metabolism , Female , Humans , Inflammation/metabolism , Male , Middle Aged , Neutrophils/metabolism , Pseudogenes/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index
9.
Res Sq ; 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34545358

ABSTRACT

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to severe COVID19. This 'innocent bystander' tissue injury arises in dysregulated hyperinflammatory states from neutrophil functions and neutrophil extracellular traps (NETs) intended to kill pathogens, but injure cells instead, causing MOF. Insufficiency of prior therapeutic approaches suggest need to identify dysregulated neutrophil-subset(s) and induce subset-specific apoptosis critical for neutrophil function-shutdown and clearance. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/signal peptide receptor, DEspR, are apoptosis-resistant just like DEspR+ cancer cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID19-ARDS. Here, we report correlation of circulating DEspR+CD11b+ activated neutrophils (DESpR+actNs) and NETosing-neutrophils with severity in ARDS and in COVID19-ARDS, increased DEspR+ neutrophils and monocytes in post-mortem ARDS-patient lung sections, and neutrophil DEspR/ET1 receptor/ligand autocrine loops in severe COVID19. Unlike DEspR[-] neutrophils, ARDS patient DEspR+actNs exhibit apoptosis-resistance, which decreased upon ex vivo treatment with humanized anti-DEspR-IgG4S228P antibody, hu6g8. Ex vivo live-cell imaging of non-human primate DEspR+actNs showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data differentiate DEspR+actNs as a targetable neutrophil-subset associated with ARDS and COVID19-ARDS severity, and suggest DEspR-inhibition as a potential therapeutic paradigm.

10.
BMC Cancer ; 21(1): 407, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33853558

ABSTRACT

BACKGROUND: Pancreatic peritoneal carcinomatosis (PPC), with the worst median overall-survival (mOS), epitomizes the incurability of metastatic cancer. Cancer stem cells (CSCs) underpin this incurability. However, inhibitors of CSC-stemness fail to increase mOS in cancer patients despite preclinical tumor-reduction. This shortfall reinforces that preclinical efficacy should be defined by increased mOS in the presence of cancer comorbidities, CSC-heterogeneity and plasticity. The primary objectives of this study are: to test the dual endothelin-1/signal peptide receptor, DEspR, as a nodal therapeutic target in PPC, given DEspR induction in anoikis-resistant pancreatic CSCs, and to validate humanized anti-DEspR antibody, hu-6g8, as a potential therapeutic for PPC. METHODS: We used heterogeneous pools of CSCs selected for anoikis resistance from reprogrammed Panc1 and MiaPaCa2 tumor cells (TCs), and adherent TCs reprogrammed from CSCs (cscTCs). We used multiple anti-DEspR blocking antibodies (mAbs) with different epitopes, and a humanized anti-DEspR recombinant mAb cross-reactive in rodents and humans, to test DEspR inhibition effects. We measured DEspR-inhibition efficacy on multiple prometastatic CSC-functions in vitro, and on tumorigenesis and overall survival in a CSC-derived xenograft (CDX) nude rat model of PPC with comorbidities. RESULTS: Here we show that DEspR, a stress-survival receptor, is present on subsets of PDAC Panc1-TCs, TC-derived CSCs, and CSC-differentiated TCs (cscTCs), and that DESpR-inhibition decreases apoptosis-resistance and pro-metastatic mesenchymal functions of CSCs and cscTCs in vitro. We resolve the DNA-sequence/protein-function discordance by confirming ADAR1-RNA editing-dependent DEspR-protein expression in Panc1 and MiaPaCa2 TCs. To advance DEspR-inhibition as a nodal therapeutic approach for PPC, we developed and show improved functionality of a recombinant, humanized anti-DEspR IgG4S228P antibody, hu-6g8, over murine precursor anti-DEspR mabs. Hu-6g8 internalizes and translocates to the nucleus colocalized with cyto-nuclear shuttling galectins-1/3, and induces apoptotic cell changes. DEspR-inhibition blocks transperitoneal dissemination and progression to peritoneal carcinomatosis of heterogeneous DEspR±/CD133 ± Panc1-derived CSCs in xenografted nude rats, improving mOS without chemotherapy-like adverse effects. Lastly, we show DEspR expression in Stage II-IV primary and invasive TCs in the stroma in PDAC-patient tumor arrays. CONCLUSION: Collectively, the data support humanized anti-DEspR hu-6g8 as a potential targeted antibody-therapeutic with promising efficacy, safety and prevalence profiles for PPC patients.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Immunoglobulin G/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/secondary , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antineoplastic Agents, Immunological/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Humans , Immunoglobulin G/chemistry , Immunohistochemistry , Immunophenotyping , Pancreatic Neoplasms/pathology , Rats , Receptor, Endothelin A , Xenograft Model Antitumor Assays
11.
Article in English | MEDLINE | ID: mdl-28185434

ABSTRACT

Nanoparticle (NP)-based drug-delivery systems are frequently employed to improve the intravenous administration of chemotherapy; however, few reports explore their application as an intraperitoneal therapy. We developed a pH-responsive expansile nanoparticle (eNP) specifically designed to leverage the intraperitoneal route of administration to treat intraperitoneal malignancies, such as mesothelioma, ovarian, and pancreatic carcinomatoses. This review describes the design, evaluation, and evolution of the eNP technology and, specifically, a Materials-Based Targeting paradigm that is unique among the many active- and passive-targeting strategies currently employed by NP-delivery systems. pH-responsive eNP swelling is responsible for the extended residence at the target tumor site as well as the subsequent improvement in tumoral drug delivery and efficacy observed with paclitaxel-loaded eNPs (PTX-eNPs) compared to the standard clinical formulation of paclitaxel, Taxol®. Superior PTX-eNP efficacy is demonstrated in two different orthotopic models of peritoneal cancer-mesothelioma and ovarian cancer; in a third model-of pancreatic cancer-PTX-eNPs demonstrated comparable efficacy to Taxol with reduced toxicity. Furthermore, the unique structural and responsive characteristics of eNPs enable them to be used in three additional treatment paradigms, including: treatment of lymphatic metastases in breast cancer; use as a highly fluorescent probe to visually guide the resection of peritoneal implants; and, in a two-step delivery paradigm for concentrating separately administered NP and drug at a target site. This case study serves as an important example of using the targeted disease-state's pathophysiology to inform the NP design as well as the method of use of the delivery system. WIREs Nanomed Nanobiotechnol 2017, 9:e1451. doi: 10.1002/wnan.1451 For further resources related to this article, please visit the WIREs website.


Subject(s)
Drug Delivery Systems , Nanoparticles , Peritoneal Neoplasms/drug therapy , Theranostic Nanomedicine , Female , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Ovarian Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy
12.
ACS Nano ; 11(2): 1466-1477, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28099801

ABSTRACT

A current challenge in the treatment of peritoneal carcinomatosis is the inability to detect, visualize, and resect small or microscopic tumors of pancreatic, ovarian, or mesothelial origin. In these diseases, the completeness of primary tumor resection is directly correlated with patient survival, and hence, identifying small sub-millimeter tumors (i.e., disseminated disease) is critical. Thus, new imaging techniques and probes are needed to improve cytoreductive surgery and patient outcomes. Highly fluorescent rhodamine-labeled expansile nanoparticles (HFR-eNPs) are described for use as a visual aid during cytoreductive surgery of pancreatic carcinomatosis. The covalent incorporation of rhodamine into ∼30 nm eNPs increases the fluorescent signal compared to free rhodamine, thereby affording a brighter and more effective probe than would be achieved by a single rhodamine molecule. Using the intraperitoneal route of administration, HFR-eNPs localize to regions of large (∼1 cm), sub-centimeter, and sub-millimeter intraperitoneal tumor in three different animal models, including pancreatic, mesothelioma, and ovarian carcinoma. Tumoral localization of the HFR-eNPs depends on both the material property (i.e., eNP polymer) as well as the surface chemistry (anionic surfactant vs PEGylated noncharged surfactant). In a rat model of pancreatic carcinomatosis, HFR-eNP identification of tumor is validated against gold-standard histopathological analysis to reveal that HFR-eNPs possess high specificity (99%) and sensitivity (92%) for tumors, in particular, sub-centimeter and microscopic sub-millimeter tumors, with an overall accuracy of 95%. Finally, as a proof-of-concept, HFR-eNPs are used to guide the resection of pancreatic tumors in a rat model of peritoneal carcinomatosis.


Subject(s)
Lung Neoplasms/diagnostic imaging , Mesothelioma/diagnostic imaging , Optical Imaging , Ovarian Neoplasms/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Peritoneal Neoplasms/diagnostic imaging , Animals , Cell Survival/drug effects , Combined Modality Therapy , Cytoreduction Surgical Procedures , Disease Models, Animal , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacokinetics , Injections, Intraperitoneal , Lung Neoplasms/surgery , Mesothelioma/surgery , Mesothelioma, Malignant , Mice , Mice, Nude , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Ovarian Neoplasms/surgery , Pancreatic Neoplasms/surgery , Peritoneal Neoplasms/surgery , Rats , Rhodamines/administration & dosage , Rhodamines/chemistry , Rhodamines/pharmacokinetics , Surface-Active Agents/chemistry , Tissue Distribution , Tumor Cells, Cultured
13.
BMC Mol Biol ; 17(1): 15, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27301377

ABSTRACT

BACKGROUND: In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein's existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions. METHODS: To dissect the nucleotide sequence discrepancy, we performed Maxam-Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR's existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects. RESULTS: Maxam-Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5 kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14. CONCLUSIONS: Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.


Subject(s)
Protein Biosynthesis , Pseudogenes/genetics , Animals , Anoikis , Cell Line, Tumor , Codon , Galectin 1/analysis , Galectin 1/metabolism , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Protein Interaction Maps , Rats , Tryptophan/genetics
14.
J Control Release ; 214: 23-9, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26160309

ABSTRACT

Layered superhydrophobic electrospun meshes composed of poly(ε-caprolactone) (PCL) and poly(glycerol monostearate-co-ε-caprolactone) (PGC-C18) are described as a local source of chemotherapeutic delivery. Specifically, the chemotherapeutic agent SN-38 is incorporated into a central 'core' layer, between two 'shield' layers of mesh without drug. This mesh is resistant to wetting of the surface and throughout the bulk due to the pronounced hydrophobicity imparted by the high roughness of a hydrophobic polymer, PGC-C18. In serum solution, these meshes exhibit slow initial drug release over 10days corresponding to media infiltrating the shield layer, followed by steady release over >30days, as the drug-loaded core layer is wetted. This sequence of events is supported by X-ray computed tomography imaging of a contrast agent solution infiltrating the mesh. In vitro cytotoxicity data collected with Lewis Lung Carcinoma (LLC) cells are consistent with this release profile, remaining cytotoxic for over 20days, longer than the unlayered version. Finally, after subcutaneous implantation in rats, histology of meshes with and without drug demonstrated good integration and lack of adverse reaction over 28days. The drug release rates, robust superhydrophobicity, in vitro cytotoxicity of SN-38 loaded meshes, and compatibility provide key design parameters for the development of an implantable chemotherapeutic-loaded device for the prevention of local lung cancer recurrence following surgical resection.


Subject(s)
Delayed-Action Preparations/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Irinotecan , Neoplasm Recurrence, Local/prevention & control , Polyesters , Rats , Rats, Inbred Lew , Solubility , Surface Properties
15.
PLoS One ; 8(1): e55222, 2013.
Article in English | MEDLINE | ID: mdl-23383116

ABSTRACT

BACKGROUND: Identification of juvenile protective factors (JPFs) which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs) have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a 'master-switch JPF-role' in stroke pathogenesis, juvenile EPC therapy alone should delay stroke-onset. Using a hypertensive, transgenic-hyperlipidemic rat model of spontaneous ischemic-hemorrhagic stroke, spTg25, we tested the hypothesis that freshly isolated juvenile EPCs are JPFs that can attenuate stroke progression and delay stroke onset. METHODOLOGY/PRINCIPAL FINDINGS: FACS analysis revealed that CD45- [CD34+/KDR+] EPCs decrease with progression to stroke in spTg25 rats, exhibit differential expression of the dual endodthelin-1/VEGFsp receptor (DEspR) and undergo differential DEspR-subtype specific changes in number and in vitro angiogenic tube-incorporation. In vivo EPC infusion of male, juvenile non-expanded cd45-[CD34+/KDR+] EPCs into female stroke-prone rats prior to stroke attenuated progression and delayed stroke onset (P<0.003). Detection of Y-chromosome DNA in brain microvessels of EPC-treated female spTg25 rats indicates integration of male EPCs into female rat brain microvessels. Gradient-echo MRI showed delay of ischemic-hemorrhagic lesions in EPC-treated rats. Real-time RT-PCR pathway-specific array-analysis revealed age-associated gene expression changes in CD45-[CD34+/KDR]EPC subtypes, which were accelerated in stroke-prone rats. Pro-angiogenic genes implicated in intimal hyperplasia were increased in stroke-prone rat EPCs (P<0.0001), suggesting a maladaptive endothelial repair system which acts like a double-edged sword repairing while predisposing to age-associated intimal hyperplasia. CONCLUSIONS/SIGNIFICANCE: Altogether, the data demonstrate that CD45-[CD34/KDR+]EPCs are juvenile protective factors for ischemic hemorrhagic stroke as modeled in the spTg25-rat model. The ability to delay stroke onset emphasizes the importance of EPC-mediated roles in vascular health for ischemic-hemorrhagic stroke, a high unmet need.


Subject(s)
Aging/physiology , Brain Ischemia/prevention & control , Endothelial Cells/metabolism , Protective Agents/metabolism , Protective Agents/pharmacology , Stem Cells/metabolism , Stroke/prevention & control , Analysis of Variance , Animals , Animals, Genetically Modified , Antigens, CD34/metabolism , Female , Flow Cytometry , Leukocyte Common Antigens/metabolism , Magnetic Resonance Imaging , Male , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
PLoS One ; 8(2): e56096, 2013.
Article in English | MEDLINE | ID: mdl-23393608

ABSTRACT

The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states.


Subject(s)
Hypertension, Renal/genetics , Kidney Diseases/genetics , Quantitative Trait Loci/genetics , Animals , Crosses, Genetic , Female , Postmenopause , Rats , Rats, Inbred Dahl
17.
PLoS One ; 7(7): e42214, 2012.
Article in English | MEDLINE | ID: mdl-22860086

ABSTRACT

The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (-26.5 mmHg, P = 0.002), DBP (-23.7 mmHg, P = 0.004) and MAP (-25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9-141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.


Subject(s)
Blood Pressure/genetics , Chromosome Mapping , Quantitative Trait Loci , Animals , Female , Rats , Rats, Inbred Dahl
18.
PLoS One ; 7(8): e43160, 2012.
Article in English | MEDLINE | ID: mdl-22912817

ABSTRACT

Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting blood pressure (BP) in 16-month old post-menopausal F2 (Dahl S×R)-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001) and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001) F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50) and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65), four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5) were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.


Subject(s)
Blood Pressure/genetics , Genetic Predisposition to Disease/genetics , Hypertension/genetics , Postmenopause/physiology , Quantitative Trait Loci/genetics , Analysis of Variance , Animals , Crosses, Genetic , Essential Hypertension , Female , Genetic Linkage , Lod Score , Male , Postmenopause/genetics , Rats , Rats, Inbred Dahl , Telemetry
19.
J Control Release ; 162(1): 92-101, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22684120

ABSTRACT

In this work we expand upon a recently reported local drug delivery device, where air is used as a degradable component of our material to control drug release (J. Am. Chem. Soc. 2012, 134, 2016-2019). We consider its potential use as a drug loaded strip to provide both mechanical stability to the anastomosis, and as a means to release drug locally over prolonged periods for prevention of locoregional recurrence in colorectal cancer. Specifically, we electrospun poly(ε-caprolactone) (PCL) with the hydrophobic polymer dopant poly(glycerol monostearate-co-ε-caprolactone) (PGC-C18) and used the resultant mesh to control the release of two anticancer drugs (CPT-11 and SN-38). The increase in mesh hydrophobicity with PGC-C18 addition slows drug release both by the traditional means of drug diffusion, as well as by increasing the stability of the entrapped air layer to delay drug release. We demonstrate that superhydrophobic meshes have mechanical properties appropriate for surgical buttressing of the anastomosis, permit non-invasive assessment of mesh location and documentation of drug release via ultrasound, and release chemotherapy over a prolonged period of time (>90 days) resulting in significant tumor cytotoxicity against a human colorectal cell line (HT-29).


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Drug Delivery Systems/instrumentation , Glycerol/analogs & derivatives , Polyesters/chemistry , Stearates/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/administration & dosage , Camptothecin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Glycerol/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Irinotecan , Monoglycerides
20.
Physiol Genomics ; 43(21): 1219-25, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21862670

ABSTRACT

Essential hypertension is highly prevalent in the elderly population, exceeding 70% in people older than 60 yr of age, and remains a leading risk factor for heart disease, stroke, and chronic renal disease. Elucidation of genetic determinants is critical but remains a challenge due to its complex, multifactorial pathogenesis. We investigated the role DEspR promoter variants, previously associated with male essential hypertension susceptibility, in blood pressure (BP) regulation. We detected a single nucleotide polymorphism within the DEspR 5'-regulatory region associated with increased BP in a male Sardinian cohort accounting for 11.0 mmHg of systolic BP (P<10(-15)) and 9.3 mmHg of diastolic BP (P<10(-15)). Sequence analysis of three normotensive subjects homozygous for the rs6535847 "normotension-associated T-allele" identified a canonical TATAAAA-box in contrast to a CATAAAA-motif in three hypertensive subjects homozygous for the rs6535847 "hypertension-associated C-allele." In vitro analysis detected decreased transcription activity with the CATAAAA-motif promoter-construct compared with the canonical TATAAAA-box promoter-construct. Although BP did not differ between DEspR+/- knockout male mice and wild-type littermates at 6 mo of age, radiotelemetric BP measurements in 18 mo old inbred DEspR+/- knockout male mice known to have decreased DEspR RNA and protein detected higher systolic, mean, and diastolic BPs in DEspR+/- mice compared with littermate wild-type controls (P<0.05). Our results demonstrate that promoter variants in DEspR associated with hypertension susceptibility and increased BP in Sardinian males affect transcription levels, which then affect BP in an age-dependent and male-specific manner. This finding is concordant with the late-onset and sex-specific characteristics of essential hypertension, thus reiterating the mandate for sex-specific analyses and treatment approaches for essential hypertension.


Subject(s)
Blood Pressure/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Receptors, Cell Surface/genetics , Transcription, Genetic , Aged , Animals , Base Sequence , Genetic Association Studies , Heart Rate/genetics , Heterozygote , Humans , Italy , Male , Mice , Molecular Sequence Data , Nucleotide Motifs/genetics , Polymerase Chain Reaction , Pseudogenes , Quantitative Trait, Heritable , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...