Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 1488, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29662071

ABSTRACT

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus.


Subject(s)
Cell Communication/drug effects , Diabetes Mellitus, Experimental/therapy , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Phenalenes/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , Humans , Immunity, Innate , Insulin/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Islets of Langerhans Transplantation , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/immunology , Streptozocin , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transplantation, Heterologous
2.
Diabetologia ; 59(4): 755-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26813254

ABSTRACT

AIMS/HYPOTHESIS: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Endoplasmic Reticulum/metabolism , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/metabolism , Paired Box Transcription Factors/metabolism , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Diabetes Mellitus, Type 1/pathology , Female , Insulin-Secreting Cells/pathology , Male , Mice , Mice, Mutant Strains
3.
Curr Gene Ther ; 15(4): 436-46, 2015.
Article in English | MEDLINE | ID: mdl-26122098

ABSTRACT

Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional ß-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes.


Subject(s)
Genetic Vectors , Islets of Langerhans/physiology , Lentivirus/genetics , Transduction, Genetic/methods , Animals , Cells, Cultured , Flow Cytometry , Glucagon/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/cytology , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...