Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nanoscale Adv ; 5(18): 5036-5044, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705789

ABSTRACT

The major stumbling block in the implementation of oxidoreductase enzymes in continuous processes is their stark dependence on costly cofactors that are insoluble in organic solvents. We describe a chemical strategy that allows producing nanobiocatalysts, based on an oxidoreductase enzyme, that performs biocatalytic reactions in hydrophobic organic solvents without external cofactors. The chemical design relies on the use of a silica-based carrier nanoparticle, of which the porosity can be exploited to create an aqueous reservoir containing the cofactor. The nanoparticle core, possessing radial-centred pore channels, serves as a cofactor reservoir. It is further covered with a layer of reduced porosity. This layer serves as a support for the immobilisation of the selected enzyme yet allowing the diffusion of the cofactor from the nanoparticle core. The immobilised enzyme is, in turn, shielded by an organosilica layer of controlled thickness fully covering the enzyme. Such produced nanobiocatalysts are shown to catalyse the reduction of a series of relevant ketones into the corresponding secondary alcohols, also in a continuous flow fashion.

2.
Microsc Res Tech ; 86(10): 1353-1362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37070727

ABSTRACT

Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.


Subject(s)
Galectin 3 , Melanoma , Humans , Elasticity , Elastic Modulus/physiology , Cell Differentiation , Microscopy, Atomic Force/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...